当前位置: 首页 > news >正文

【算法】【动规】回文串系列问题

文章目录

    • 跳转汇总链接
    • 3.1 回文子串
    • 3.2 最长回文子串
    • 3.3 分割回文串 IV
    • 3.4 分割回文串II(hard)


跳转汇总链接

👉🔗动态规划算法汇总链接


3.1 回文子串

🔗题目链接

给定一个字符串 s ,请计算这个字符串中有多少个回文子字符串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

  1. 状态表示
    • dp[i][j] 表示字符串 s 中以 i 位置开头 j 位置结尾的子串,是否是回文。
  2. 状态转移方程
    • 分析 dp 表,要判断 [i, j] 位置的子串是否为回文,首先要根据 s[i] 和 s[j] 的大小判定,具体如下:

      s[i] != s[j], false
      s[i] == s[j], i == j, truei + 1 == j, truej - i > 1, s[i+1][j-1] == true, trues[i+1][j-1] == false, false
      
  3. 初始化
    • 这里主要是[i+1][j-1] 可能会超出需要范围,但是有个隐含条件 i <= j,可以在 for 循环中控制,所以不需要初始化。
  4. 填表顺序
    • 填写 dp[i][j],需要有 [i+1] 和 [j-1],故二维数组从下往上填写。
  5. 返回值
    • dp 中的 true 的出现次数。

🐎代码如下:

class Solution {
public:int countSubstrings(string s) {int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));int ret = 0;for(int i = n - 1; i >= 0; i--){for(int j = i; j < n; j++){// 默认都是 false,只需要处理 true 的位置if(s[i] == s[j])dp[i][j] = i + 1 < j ? dp[i+1][j-1] : true;if(dp[i][j])ret++;}}return ret;}
};

3.2 最长回文子串

🔗题目链接

给你一个字符串 s,找到 s 中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

如上题分析,写 dp 方程。

在 dp[i][j] 且满足基本约束时,找到 len(即 j - i + 1)的最大值,
同时,由于 dp 表是从下往上(从后往前)填的,正好更新 begin。

🐎代码如下:

class Solution {
public:string longestPalindrome(string s) {int n = s.size();int len = 1, begin = 0;vector<vector<bool>> dp(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--){for(int j = i; j < n; j++){if(s[i] == s[j])dp[i][j] = i+1 < j ? dp[i+1][j-1] : true;if(dp[i][j] && j-i+1 > len)len = j - i + 1, begin = i;}}return s.substr(begin, len);}
};

3.3 分割回文串 IV

🔗题目链接

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。
当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。

还是照上述方法,生成 dp 表,记录是否为回文子串,进行数据预处理;

再将字符分成三部分,依次遍历,如果 相应位置的 dp 值为 true,就可以直接返回啦。

🐎代码如下:

class Solution {
public:bool checkPartitioning(string s) {int n = s.size();// 1. 预处理:子串是否是回文vector<vector<bool>> dp(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--)for(int j = i; j < n; j++)if(s[i] == s[j])dp[i][j] = i+1 < j ? dp[i+1][j-1] : true;// 2. 字符串分成三段,枚举就好了// [0, i) [i, j) [j, n)for(int i = 1; i < n - 1; i++)  // i 是第二段的起始for(int j = i + 1; j < n; j++)  // j 是第三段的起始if(dp[0][i-1] && dp[i][j-1] && dp[j][n-1])return true;return false;}
};

3.4 分割回文串II(hard)

🔗题目链接

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。
返回符合要求的 最少分割次数 。

同样先预处理数据,方便判断子串是否是回文串;

剩下的分析方法与 1.4 单词拆分题 一样:

  • dp[i] 表示 s[0, i] 位置上的最长字串的最小分割次数;
  • 当分析 dp[i] 的时候,需要将[0, i] 分成两部分:
    • 首先是离 i 最近的 [j, i],找到能满足是回文的 j,

    • 再找 [0, j-1] 的最小分割次数,正是和状态表示一样,于是有

      dp[i], [0, i] 是回文,0[0, i] 不是回文,有 0 < j <= i,[j, i] 是回文,求 min(dp[j]+1)[j, i] 不是回文,不考虑
      

🐎代码如下:

class Solution {
public:int minCut(string s) {int n = s.size();// 1. 预处理:子串是否是回文vector<vector<bool>> sub(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--)for(int j = i; j < n; j++)if(s[i] == s[j])sub[i][j] = i+1 < j ? sub[i+1][j-1] : true;// 2. 分割,是另一个dp问题咯~vector<int> dp(n, 0x3f3f3f3f);for(int i = 0; i < n; i++){if(sub[0][i]) dp[i] = 0;elsefor(int j = 1; j <= i; j++)if(sub[j][i])dp[i] = min(dp[j - 1] + 1, dp[i]);}return dp[n-1];}
};

🥰如果本文对你有些帮助,欢迎👉 点赞 收藏 关注,你的支持是对作者大大莫大的鼓励!!(✿◡‿◡) 若有差错恳请留言指正~~


相关文章:

【算法】【动规】回文串系列问题

文章目录 跳转汇总链接3.1 回文子串3.2 最长回文子串3.3 分割回文串 IV3.4 分割回文串II(hard) 跳转汇总链接 &#x1f449;&#x1f517;动态规划算法汇总链接 3.1 回文子串 &#x1f517;题目链接 给定一个字符串 s &#xff0c;请计算这个字符串中有多少个回文子字符串。 …...

4-Docker命令之docker logs

1.docker logs介绍 docker logs命令是用来获取docker容器的日志 2.docker logs用法 docker logs [参数] CONTAINER [root@centos79 ~]# docker logs --helpUsage: docker logs [OPTIONS] CONTAINERFetch the logs of a containerAliases:docker container logs, docker lo…...

svelte基础语法学习

官网文档地址&#xff1a;绑定 / Each 块绑定 • Svelte 教程 | Svelte 中文网 1、样式 一般情况下父子组件内样式隔离、同级组件间样式隔离 2、页面布局 <style>P{color: red;} </stye><script> // 类似data let name ‘jiang’ let countVal 0 let s…...

Node.js教程-mysql模块

概述 在Node.js中&#xff0c;mysql模块是实现MySQL协议的JavaScript客户端工具。Node.js程序通过与MySQL建立链接&#xff0c;然后可对数据进行增、删、改、查等操作。 安装 由于mysql模块不是Node.js内置模块&#xff0c;需手动安装 npm i mysql注意&#xff1a;若MySQL服…...

网络通信协议

WebSocket通信 WebSocket是一种基于TCP的网络通信协议&#xff0c;提供了浏览器和服务器之间的全双工通信&#xff08;full-duplex&#xff09;能力。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接&#xff…...

Spark集群部署与架构

在大数据时代&#xff0c;处理海量数据需要分布式计算框架。Apache Spark作为一种强大的大数据处理工具&#xff0c;可以在集群中高效运行&#xff0c;处理数十TB甚至PB级别的数据。本文将介绍如何构建和管理Spark集群&#xff0c;以满足大规模数据处理的需求。 Spark集群架构…...

DshanMCU-R128s2 SDK 架构与目录结构

R128 S2 是全志提供的一款 M33(ARM)C906(RISCV-64)HIFI5(Xtensa) 三核异构 SoC&#xff0c;同时芯片内部 SIP 有 1M SRAM、8M LSPSRAM、8M HSPSRAM 以及 16M NORFLASH。 本文档作为 R128 FreeRTOS SDK 开发指南&#xff0c;旨在帮助软件开发工程师、技术支持工程师快速上手&am…...

【5G PHY】NR参考信号功率和小区总传输功率的计算

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

k8s学习 — 各知识点快捷入口

k8s学习 — 各知识点快捷入口 k8s学习 — 第一章 核心概念 k8s学习 — 第一章 核心概念 命名空间 实践&#xff1a; k8s学习 — &#xff08;实践&#xff09;第二章 搭建k8s集群k8s学习 — &#xff08;实践&#xff09;第三章 深入Podk8s学习 — &#xff08;实践&#xff0…...

【Python】Python 批量转换PDF到Excel

PDF是面向展示和打印使用的&#xff0c;并未考虑编辑使用&#xff0c;所以缺少了很多编辑属性且非常难修改PDF里面的数据。当您需要分析或修改PDF文档数据时&#xff0c;可以将PDF保存为Excel工作簿&#xff0c;实现轻松编辑数据的需求。PDF转Excel&#xff0c;技术关键就是提取…...

Python并行计算和分布式任务全面指南

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python并行计算和分布式任务全面指南。全文2900字&#xff0c;阅读大约8分钟 并发编程是现代软件开发中不可或缺的一部分&#xff0c;它允许程序同时执行多个任务&#xff0…...

微信小程序promise封装

一. 在utils文件夹内创建一个request.js 写以下封装的 wx.request() 方法 const baseURL https:// 域名 ; //公用总路径地址 export const request (params) > { //暴露出去一个函数&#xff0c;并且接收一个外部传入的参数let dataObj params.data || {}; //…...

hash长度扩展攻击

作为一个信息安全的人&#xff0c;打各个学校的CTF比赛是比较重要的&#xff01; 最近一个朋友发了道题目过来&#xff0c;发现有道题目比较有意思&#xff0c;这里跟大家分享下 这串代码的大致意思是&#xff1a; 这段代码首先引入了一个名为"flag.php"的文件&am…...

设计模式--命令模式

实验16&#xff1a;命令模式 本次实验属于模仿型实验&#xff0c;通过本次实验学生将掌握以下内容&#xff1a; 1、理解命令模式的动机&#xff0c;掌握该模式的结构&#xff1b; 2、能够利用命令模式解决实际问题。 [实验任务]&#xff1a;多次撤销和重复的命令模式 某系…...

单例模式的七种写法

为什么使用单例&#xff1f; 避免重复创建对象,节省内存,方便管理;一般我们在工具类中频繁使用单例模式; 1.饿汉式(静态常量)-[可用] /*** 饿汉式(静态常量)*/ public class Singleton1 {private static final Singleton1 INSTANCE new Singleton1();private Singleton1(){}…...

ElasticSearch入门介绍和实战

目录 1.ElasticSearch简介 1.1 ElasticSearch&#xff08;简称ES&#xff09; 1.2 ElasticSearch与Lucene的关系 1.3 哪些公司在使用Elasticsearch 1.4 ES vs Solr比较 1.4.1 ES vs Solr 检索速度 2. Lucene全文检索框架 2.1 什么是全文检索 2.2 分词原理之倒排索引…...

【FPGA】分享一些FPGA视频图像处理相关的书籍

在做FPGA工程师的这些年&#xff0c;买过好多书&#xff0c;也看过好多书&#xff0c;分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…...

AUTOSAR从入门到精通-车载以太网(四)

目录 前言 原理 车载以太网发展历史 为何选择车载以太网...

MySQL报错:1054 - Unknown column ‘xx‘ in ‘field list的解决方法

我在操作MySQL遇到1054报错&#xff0c;报错内容&#xff1a;1054 - Unknown column Cindy in field list&#xff0c;下面演示解决方法&#xff0c;非常简单。 根据箭头指示&#xff0c;Cindy对应的应该是VARCHAR文本数字类型&#xff0c;字符串要用引号&#xff0c;所以解决方…...

【Android 13】使用Android Studio调试系统应用之Settings移植(四):40+个依赖子模块之ActionBarShadow

文章目录 一、篇头二、系列文章2.1 Android 13 系列文章2.2 Android 9 系列文章2.3 Android 11 系列文章三、子模块AS移植3.1 AS创建目标3.2 创建ActionBarShadow(1)使用VS Code打开org_settings/SettingsLib目录(2)ActionBarShadow的Manifest.xml(3)ActionBarShadow的An…...

nosql-redis整合测试

nosql-redis整合测试 1、创建项目并导入redis2、配置redis3、写测试类4、在redis中创建key5、访问80826、在集成测试中测试方法 1、创建项目并导入redis 2、配置redis 3、写测试类 4、在redis中创建key 5、访问8082 6、在集成测试中测试方法 package com.example.boot3.redis;…...

智能化中的控制与自动化中的控制不同

智能化中的控制相对于自动化中的控制更加灵活、智能、综合和学习能力强。智能化控制系统能够根据实际情况进行自主决策和优化&#xff0c;适用范围更广&#xff0c;效果更好。 首先&#xff0c;智能化控制系统能够根据外部环境的变化和实时数据的反馈来自主调整和优化控制策略&…...

java练习题之多态练习

1&#xff1a;关于多态描述错误的是(D) A. 父类型的引用指向不同的子类对象 B. 用引用调用方法&#xff0c;只能调用引用中声明的方法 C. 如果子类覆盖了父类中方法&#xff0c;则调用子类覆盖后的方法 D. 子类对象类型会随着引用类型的改变而改变 2&#xff1a;class Supe…...

[原创][R语言]股票分析实战[4]:周级别涨幅趋势的相关性

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ联系: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、D…...

esp32使用lvgl,给图片取模显示图片

使用LVGL官方工具。 https://lvgl.io/tools/imageconverter 上传图片&#xff0c;如果想要透明效果&#xff0c;那么选择 输出格式C array&#xff0c;点击Convert进行转换。 下载.c文件放置到工程下使用即可。...

R语言使用scitb包10分钟快速绘制论文基线表

scitb包目前进行了升级到1.7版本了&#xff0c;我做了一个操作视频&#xff0c;如何快速绘制基线表。 scitb包绘制基线表 可以配套看下我的关于scitb包文章理解一下 scitb包1.6版本发布&#xff0c;一个为制作专业统计表格而生的R包...

类和对象

1 类定义&#xff1a; class ChecksumAccumulator {// class definition goes here } 你就能创建 ChecksumAccumulator 对象&#xff1a;new CheckSumAccumulator 注&#xff1a;1scala类中成员默认是public类型&#xff0c;若设为私有属性则必须加private关键字。在scala中是…...

Py之tensorflow-addons:tensorflow-addons的简介、安装、使用方法之详细攻略

Py之tensorflow-addons&#xff1a;tensorflow-addons的简介、安装、使用方法之详细攻略 目录 tensorflow-addons的简介 tensorflow-addons的安装 tensorflow-addons的使用方法 1、使用 TensorFlow Addons 中的功能&#xff1a; tensorflow-addons的简介 TensorFlow Addon…...

STM32G4x FLASH 读写配置结构体(LL库下使用)

主要工作就是把HAL的超时用LL库延时替代&#xff0c;保留了中断擦写模式、轮询等待擦写&#xff0c;我已经验证了部分。 笔者用的芯片为STM32G473CBT6 128KB Flash&#xff0c;开环环境为CUBEMXMDK5.32&#xff0c;因为G4已经没有标准库了&#xff0c;笔者还是习惯使用标准库的…...

【AI提示词人物篇】创新艺术未来,让科技改变想象空间

AI 绘画学习难度和练习技巧 学习绘画的技巧 学习能难度&#xff1a; 外貌特征&#xff1a;AI需要学习识别和理解各种外貌特征&#xff0c;如发型、肤色、眼睛颜色等。这可能需要大量的训练数据和复杂的模型架构。 镜头提示&#xff1a;AI需要学习理解不同镜头提示的含义&…...