cfa一级考生复习经验分享系列(十一)
理工科已经毕业,正在工作,毫无金融背景。一共准备了四个月,每天下班和周末抽时间看看。前三个月节奏比较松散,毕竟时不时有人叫我出去high,最后一个月认真看了看。
-
用到的资料
JC网课,官方Mock,Curriculum课后题。Curriculum正文基本没有看,notes完全没看。 -
具体策略
1.看网课,打印下来ppt记笔记,做课后题。
首先是JC前导。内容不多,没有金融背景或者对cfa考试没什么概念的可以听一下,有个印象就行。
接下来是JC基础,这占据了我90%的备考时间。建议先跳过ethics,毕竟没有什么要深入理解的内容,最后再听也不影响以后的学习,印象还更深刻。Quant比较简单,所有基本的数学内容本科都学过,只是有的知识套上了金融的壳子而已,本科没学过的那还是好好学学吧,尤其是假设检验那里。当老师教完金融计算器的使用后,以后的练习都不要用别的计算器了,养成好习惯。Econ一直以来被考生们说性价比不高,其实也确实是这样的,内容多且相对难度高,不过学起来也蛮有意思。网课讲的不是很深入,但应对考试没什么问题,只要把讲的内容都弄懂。如果怕上来被劝退也可以留到最后学。Financial Reporting我花了很长时间,一来是因为我毫无基础,二来是因为确实重要。其实不仅仅是应对考试,学了财报之后看公司报表,阅读相关新闻都顺畅了很多。建议财报学完后梳理一下知识框架,毕竟内容太多,有很多易于混淆的点。Corporate finance 相比财报很简单,按着网课走就行了。Portfolio对我来说很简单,当初学optimization的时候efficient frontier是我们作业练习题。这部分内容还是比较重要的,建议花一些时间弄懂。后来的fintech理解起来也没什么压力,因为我学过machine learning和block chain,不过这部分不是考试重点,没必要花时间都弄得一清二楚。接下来的equity,fixed income 也都蛮重要,网课讲得也不错。课程为了帮助我们理解内容,会用一些复杂的计算题目当例题,覆盖很多知识点。我觉得能看懂就行,不用要求自己会做。而 derivative,alternative我觉得网课一般,很多内容我需要网上搜索一下才明白,不过内容确实是很少,性价比高一定不能放弃。
-
做课后题
一直看网课也挺无聊,所以我会交叉复习之前看过的网课并完成课后题。所以做课后题和听网课的进度基本保持一致,第一遍学习下来就有了一个对知识的整体认识。有时候网课老师也会漏掉一些内容,或者有分析不清楚的地方,这时候我会在curriculum里面找,或者上网搜索相关信息,基本上做到了知其然也知其所以然。有时候做题的时候会发现一些没有讲到的知识点,不用太纠结,看答案能明白就行,毕竟考试能通过就好,不要求高分。
3.* 基础班二刷
接下来我开始第二遍复习基础课程,视频不会再看了,就是复习做好笔记的讲义,同时再做一遍课后题。第二遍复习还是要花很多时间的,之前没弄懂的要弄懂,忘记的知识要在此记忆。不过这遍下来对知识的整体理解更深入了,而不是碎片化的。这遍复习的时候没有看ethics。 -
第三遍基础课程
还是看讲义+课后题,并且刻意去记忆知识点。这次复习就很快了,基本上一个礼拜(包括了一个周末)就搞定了。有一些难以记住的知识点/公式我会写在笔记本上,方便考前冲刺。这遍复习的时候也没有看ethics和quant。
之后又看了一遍财报,因为确实内容多。 -
刷题
之后我开始做mock,前两套做的顺风顺水,85%+正确率,感觉已经稳了,还想嘲笑一下网上说mock特别难的人。然而第三套发现极难,题干中有的词我都没在网课里面听过。。。做了60道题直接放弃,答案都没看。虽然题目很难,但是ethics部分还是很好的,强烈建议把几套mock中的ethics都做了,就当看case,尤其是对于我这种之前没有花太多时间再ethics上的。
后来的强化,冲刺,模考,押题我都没细看。主要是没有时间,其次是吃透基础班就足以应对考试了。不过如果有时间的话,建议可以多刷刷题。上考场前一天拿出自己记下的易错点复习两遍。
相关文章:
cfa一级考生复习经验分享系列(十一)
理工科已经毕业,正在工作,毫无金融背景。一共准备了四个月,每天下班和周末抽时间看看。前三个月节奏比较松散,毕竟时不时有人叫我出去high,最后一个月认真看了看。 用到的资料 JC网课,官方Mock,…...
Nginx基本配置内容
http 模块适用于处理 Web 请求,而 stream 模块适用于处理非 HTTP 流量,如数据库连接、邮件传输等。 在 stream 模块中,你可以配置一些 TCP 或 UDP 的代理服务,以便 Nginx 能够转发这些流量。 与网站相关的 关于网站相关的要写在ht…...
Jenkins安装与设置(插件安装失败,版本问题解决)
早期的使用docker安装jenkins的方法会出现插件无法安装的问题,是由于docker拉取的jenkins版本太低了 jdk安装 Linux系统安装JDK1.8 详细流程 maven安装: centos7下安装Maven 使用docker进行安装jenkins: 先把镜像和容器卸干净 docker ps -a…...
精度提升10个点!HD-Painter:无需训练的文本引导高分辨率图像修复方案!
基于文本到图像扩散模型的空前成功,在文本引导的图像修复方面取得了最新进展,取得了异常逼真和视觉上可靠的结果。然而,目前的文本到图像修复模型仍然存在显著的改进潜力,特别是在更好地与用户提示对齐和执行高分辨率修复方面。因…...
javaweb初体验
javaweb初体验 文章目录 javaweb初体验前言一、流程:1.创建Maven的父工程2.创建Maven,Webapp的子工程3.在pom.xml文件中添加依赖(父工程与子工程共用)4.写一个helloservlet类实现httpservlet接口,重写doget,…...
手写爬虫框架
前言 参照了Scrapy、Feapder的设计模式,实现的一个轻量级爬虫框架(目前约200行代码) 源码地址 https://gitee.com/markadc/pader 项目持续更新中…...
基于Kettle和帆软Finereport的血缘解析
一、背景: 用户经常会针对数据存在质量的存疑,反馈数据不准。开发人员排查数据质量问题步骤:首先和业务人员对接了解是哪里数据不准确,要定位是哪张报表,然后查看报表后面数据来源,然后一路排查数仓。往往定…...
给qemu虚机更换(Windows PE)光盘
1. 背景 qemu虚机里运行windows。如果遇到虚机windows启动故障,甚至连安全模式也故障时,可以尝试更换另一个光驱里的光盘为pe光盘。 2. 步骤 2.1. 找出VDI虚机所在的计算节点 ssh登录之,virsh list获得虚机id,例如 391 1255…...
python 神经网络归纳
CNN卷积神经网络 一个卷积神经网络主要由以下5层组成: 数据输入层/ Input layer卷积计算层/ CONV layerReLU激励层 / ReLU layer池化层 / Pooling layer全连接层 / FC layer 1. 数据输入层 该层要做的处理主要是对原始图像数据进行预处理,其中包括&…...
Python高级语法与正则表达式
Python提供了 with 语句的写法,既简单又安全。 文件操作的时候使用with语句可以自动调用关闭文件操作,即使出现异常也会自动关闭文件操作。 # 1、以写的方式打开文件 with open(1.txt, w) as f:# 2、读取文件内容f.write(hello world) 生成器的创建方…...
【洛谷算法题】P4414-[COCI2006-2007#2] ABC【入门2分支结构】Java题解
👨💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P4414-[COCI2006-2007#2] ABC【入门2分支结构】Java题解🌏题目描述&a…...
Python如何将图片转换成字符
PIL(Python Image Library)库是Python平台上一个功能强大的图像处理标准库,支持图像的存储、显示和处理,几乎可以处理所有图片格式,如图像的压缩、裁剪、叠加、添加文字等等。 安装PIL库:pip install pillow from PIL import Image ascii_cha…...
国家开放大学形成性考核 统一资料 参考试题
试卷代号:1174 水工钢筋混凝土结构(本)参考试题 一、选择题(每小题2分,共20分,在所列备选项中,选1项正确的或最好的作为答案,将选项号填入各题的括号中) 1.钢筋混凝土结…...
4.7 【共享源】流的生产者(二)
七,模式 流的模式决定了Screen如何使前台缓冲区可用。生产者通过调用screen_set_stream_property_iv()并设置SCREEN_PROPERTY_MODE属性来设置模式。有效模式如下: 7.1 SCREEN_STREAM_MODE_DEFAULT 如果生产者应用程序没有在流上明确设置 SCREEN_PROPERTY_MODE 属性,则 Sc…...
流量录制回放工具在自动化测试领域应用探索
引言: 随着中国农业银行技术架构的日益更迭与业务场景的不断创新,测试工作正在面临数据构造繁琐、案例维护成本较高且质量参差不齐等诸多问题与挑战,主要体现在以下四方面: 一是在系统架构升级与代码重构时,大量原始接…...
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 Shell method Setting up the Integral 例题 Example 1: Example 2: Example 3: Example …...
Ubuntu20.04 及深度学习环境anaconda、cuda、cudnn、pytorch、paddle2.3安装记录
学习目标: Ubuntu20.04下装好torch、paddle深度学习环境。 选择的版本环境是 :最新的nvidia驱动、cuda 11.1 、cudnn v8.1.1,下面会说为啥这么选。 学习内容: 1. Ubuntu20.04仓库换源 本节参考Ubuntu 20.04 Linux更换源教程 2…...
场景切割CVPr2022 SceneSegmentation
目录 算法介绍 无监督训练原理 源码地址: lstm模块 bilstm opencv场景分割 加阈值:...
Spring Cloud Feign作为HTTP客户端调用远程HTTP服务
如果你的项目使用了SpringCloud微服务技术,那么你就可以使用Feign来作为http客户端来调用远程的http服务。当然,如果你不想使用Feign作为http客户端,也可以使用比如JDK原生的URLConnection、Apache的Http Client、Netty的异步HTTP Client或者Spring的RestTemplate。 那么,为…...
[node] Node.js的文件系统
[node] Node.js的文件系统 文件系统的使用异步和同步input.txt示例 常用方法打开文件语法示例 获取文件信息语法示例 写入文件语法示例 读取文件语法示例 关闭文件语法示例 截取文件语法示例 删除文件语法示例 创建目录语法示例 读取目录语法示例 删除目录语法示例 文件模块方法…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
