165. 小猫爬山(DFS之剪枝与优化)
165. 小猫爬山 - AcWing题库
翰翰和达达饲养了 N 只小猫,这天,小猫们要去爬山。
经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<)。
翰翰和达达只好花钱让它们坐索道下山。
索道上的缆车最大承重量为 W,而 N 只小猫的重量分别是 C1、C2……Cn。
当然,每辆缆车上的小猫的重量之和不能超过 W。
每租用一辆缆车,翰翰和达达就要付 1 美元,所以他们想知道,最少需要付多少美元才能把这 N 只小猫都运送下山?
输入格式
第 1 行:包含两个用空格隔开的整数,N 和 W。
第 2..N+1 行:每行一个整数,其中第 i+1 行的整数表示第 i 只小猫的重量 Ci。
输出格式
输出一个整数,表示最少需要多少美元,也就是最少需要多少辆缆车。
数据范围
1≤N≤18
1≤Ci≤W≤108
输入样例:
5 1996
1
2
1994
12
29
输出样例:
2
解析 :
DFS之剪枝与优化主要方法:
1.优化搜索顺序:大部分情况下,我们应该优先搜索分支较少的节点
2.排除等效冗余
3.可行性剪枝
4.最优性剪枝
5.记忆化搜索(dp)
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef long long LL;
const int N = 20;
int n, w;
int cr[N], sum[N];
int ans;int cmp(const int& a, const int& b) {return a > b;
}void dfs(int u, int k) {//最优性剪枝if (k >= ans)return;if (u > n) {ans = k;return;}for (int i = 1; i <= k; i++) {if (sum[i] + cr[u] <= w) {//可行性剪枝sum[i] += cr[u];dfs(u + 1, k);sum[i] -= cr[u];//恢复现场}}sum[k + 1] = cr[u];dfs(u + 1, k + 1);
}int main() {cin >> n >> w;for (int i = 1; i <= n; i++) {scanf("%d", &cr[i]);}//优化搜索顺序sort(cr + 1, cr + 1 + n, cmp);ans = n;dfs(1, 1);cout << ans << endl;return 0;
}
相关文章:
165. 小猫爬山(DFS之剪枝与优化)
165. 小猫爬山 - AcWing题库 翰翰和达达饲养了 N 只小猫,这天,小猫们要去爬山。 经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<)。 翰翰和达达只好花钱让它们…...
【Linux系统基础】(6)在Linux上大数据NoSQL数据库HBase集群部署、分布式内存计算Spark环境及Flink环境部署详细教程
大数据NoSQL数据库HBase集群部署 简介 HBase 是一种分布式、可扩展、支持海量数据存储的 NoSQL 数据库。 和Redis一样,HBase是一款KeyValue型存储的数据库。 不过和Redis设计方向不同 Redis设计为少量数据,超快检索HBase设计为海量数据,…...
多维时序 | MATLAB实CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测
多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现CNN-BiGRU-Mutilhead-Attention卷积网络结合双向门控循环单元网络融合多头注意力机制多变量时间序列预测预测效果基本介…...
vs快捷键
ctrlMo 折叠代码块 ctrlML 打开代码块...
linux 内核时间计量方法
定时器中断由系统定时硬件以规律地间隔产生; 这个间隔在启动时由内核根据 HZ 值来编 程, HZ 是一个体系依赖的值, 在 <linux/param.h>中定义或者它所包含的一个子平台文 件中. 在发布的内核源码中的缺省值在真实硬件上从 50 到 1200 嘀哒每秒, 在软件模拟 器中往下到 24.…...
循环神经网络中的梯度消失或梯度爆炸问题产生原因分析(二)
上一篇中讨论了一般性的原则,这里我们具体讨论通过时间反向传播(backpropagation through time,BPTT)的细节。我们将展示目标函数对于所有模型参数的梯度计算方法。 出于简单的目的,我们以一个没有偏置参数的循环神经…...
JWT signature does not match locally computed signature
1. 问题背景 最近在协助团队小盆友调试一个验签问题,结果还“节外生枝”了,原来不是签名过程的问题,是token的问题。 当你看到“JWT signature does not match locally computed signature. JWT validity cannot be asserted and should not…...
vitepress项目使用github的action自动部署到github-pages中,理论上可以通用所有
使用github的action自动部署到github-pages中 创建部署的deploy.yml文件,在项目的根目录下面 .github\workflows\deploy.yml 完整的代码:使用的是pnpm进行依赖安装。 name: 部署VitePresson:push:branches:- docs # 这段是在推送到 docs 分支时触发该…...
Python爬虫---解析---JSONPath
Xpath可以解析本地文件和服务器响应的文件,JSONPath只能解析本地文件 1. 安装jsonpath:pip install jsonpath 注意:需要安装在python解释器相同的位置,例如:D:\Program Files\Python3.11.4\Scripts 2. 使用步骤 2.1 导入&…...
路由器介绍和命令操作
先来回顾一下上次的内容: ip地址就是由32位二进制数组 二进位数就是只有数字0和1组成 网络位:类似于区号,表示区域作用 主机位:类似于号码,表示区域中编号 网络名称:网络位不变,主机位全为0 …...
Hadoop——分布式计算
一、分布式计算概述 1. 什么是计算、分布式计算? 计算:对数据进行处理,使用统计分析等手段得到需要的结果分布式计算:多台服务器协同工作,共同完成一个计算任务2. 分布式计算常见的2种工作模式分散->汇总 (MapReduce就是这种模式)将数据分片,多台服务器各自负责一…...
LaTeX引用参考文献 | Texstudio引用参考文献
图片版教程: 文字版教程: ref.bib里面写参考的文献,ref.bib和document.tex要挨着放,同一个目录里面. 解析一下bib文件格式:aboyeji2023effect是引用文献的关键字,需要在正文document.tex里面使用\cite指令…...
如何在Go中使用模板
引言 您是否需要以格式良好的输出、文本报告或HTML页面呈现一些数据?你可以使用Go模板来做到这一点。任何Go程序都可以使用text/template或html/template包(两者都包含在Go标准库中)来整齐地显示数据。 这两个包都允许你编写文本模板并将数据传递给它们,以按你喜欢的格式呈…...
云原生之深入解析基于FunctionGraph在Serverless领域的FinOps的探索和实践
一、背景 Serverless 精确到毫秒级的按用付费模式使得用户不再需要为资源的空闲时间付费。然而,对于给定的某个应用函数,由于影响其计费成本的因素并不唯一,使得用户对函数运行期间的总计费进行精确的事先估计变成了一项困难的工作。以传统云…...
电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述
电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。…...
Python常用的几个函数
print()函数:用于打印输出信息到控制台。 input()函数:用于从控制台获取用户输入。 len()函数:用于获取字符串、列表、元组、字典等对象的长度。 range()函数:用于生成一个整数序列,常用于循环中。 type()函数&…...
【Linux系统基础】(2)在Linux上部署MySQL、RabbitMQ、ElasticSearch等各类软件
实战章节:在Linux上部署各类软件 前言 为什么学习各类软件在Linux上的部署 在前面,我们学习了许多的Linux命令和高级技巧,这些知识点比较零散,同学们跟随着课程的内容进行练习虽然可以基础掌握这些命令和技巧的使用,…...
HarmonyOS4.0系统性深入开发01应用模型的构成要素
应用模型的构成要素 应用模型是HarmonyOS为开发者提供的应用程序所需能力的抽象提炼,它提供了应用程序必备的组件和运行机制。有了应用模型,开发者可以基于一套统一的模型进行应用开发,使应用开发更简单、高效。 HarmonyOS应用模型的构成要…...
线下终端门店调研包含哪些内容
品牌渠道一般分为线上和线下,线上的价格、促销信息、店铺优惠机制等都可以通过登录查看,但是线下门店的数据则需要进店巡查,否则无法得到真实的店铺销售数据,当然也有品牌是靠线下的业务团队报备机制获得这些信息,但是…...
倾斜摄影三维模型数据在行业应用分析
倾斜摄影三维模型数据在行业应用分析 倾斜摄影三维模型数据是一种重要的地理信息资源,可以广泛应用于各个行业和场景,以解决不同领域的问题。以下将详细探讨几个典型的行业或场景,它们利用倾斜摄影三维模型数据解决问题的应用。 1、地理测绘…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
