当前位置: 首页 > news >正文

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现

CORDIC.v

module cordic32#(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform)(input                              clk       ,input                              rst_n     ,input    signed    [DATA_WIDTH - 1 : 0]   phase     ,input                              ena       ,output  reg signed [DATA_WIDTH - 1  : 0]   sin_out   ,output  reg signed [DATA_WIDTH - 1  : 0]   cos_out);// -----------------------------------------------  \\//    next is define and parameter                  \\// ------------------------------------------------- \\
reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg    ;reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg1    ;reg    signed     [DATA_WIDTH - 1 : 0]     X0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Y0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Z0           ;wire   signed     [DATA_WIDTH - 1 : 0]     X1 , Y1 , Z1 ;wire   signed     [DATA_WIDTH - 1 : 0]     X2 , Y2 , Z2 ;wire   signed     [DATA_WIDTH - 1 : 0]     X3 , Y3 , Z3 ;wire   signed     [DATA_WIDTH - 1 : 0]     X4 , Y4 , Z4 ;wire   signed     [DATA_WIDTH - 1 : 0]     X5 , Y5 , Z5 ;wire   signed     [DATA_WIDTH - 1 : 0]     X6 , Y6 , Z6 ;wire   signed     [DATA_WIDTH - 1 : 0]     X7 , Y7 , Z7 ;wire   signed     [DATA_WIDTH - 1 : 0]     X8 , Y8 , Z8 ;wire   signed     [DATA_WIDTH - 1 : 0]     X9 , Y9 , Z9 ;wire   signed     [DATA_WIDTH - 1 : 0]     X10 , Y10 , Z10 ;wire   signed     [DATA_WIDTH - 1 : 0]     X11 , Y11 , Z11 ;wire   signed     [DATA_WIDTH - 1 : 0]     X12 , Y12 , Z12 ;wire   signed     [DATA_WIDTH - 1 : 0]     X13 , Y13 , Z13 ;wire   signed     [DATA_WIDTH - 1 : 0]     X14 , Y14 , Z14 ;wire   signed     [DATA_WIDTH - 1 : 0]     X15 , Y15 , Z15 ;wire   signed     [DATA_WIDTH - 1 : 0]     X16 , Y16 , Z16 ;reg    signed     [DATA_WIDTH - 1 : 0]     XN15 , YN15     ;reg [1:0] quadrant[PIPELINE : 0] ;integer i ;// We will convert all new angles to the first quadrant//always@(posedge clk or negedge rst_n)beginif( rst_n == 0 )beginphase_reg <= 0 ;phase_reg1 <= 0 ;endelse if( ena == 1)beginphase_reg1 <= phase ;case(phase[DATA_WIDTH - 1 : DATA_WIDTH - 2])2'b00 :phase_reg <= phase                 ;2'b01 :phase_reg <= phase - 32'h40000000  ;   // -902'b10 :phase_reg <= phase - 32'h80000000  ;   // -1802'b11 :phase_reg <= phase - 32'hC0000000  ;   // -270default :phase_reg <= 32'h00   ; endcaseendend// We begin the initialization operation// we set 0.607253*???2^31-1???,32'h4DBA775Falways@(posedge clk or negedge rst_n)beginif(rst_n == 0 )beginX0 <= 0 ;Y0 <= 0 ;Z0 <= 0 ;endelse if(ena == 1)beginX0 <= 32'h4DBA775F ;Y0 <= 0            ;Z0 <= phase_reg    ;endend// for instantiation - 16
INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd0 ),.ANGLE      ( 32'h20000000 )
)u_INTERATION0(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X0         ),.Y0         ( Y0         ),.Z0         ( Z0         ),.X1         ( X1         ),.Y1         ( Y1         ),.Z1         ( Z1         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd1 ),.ANGLE      ( 32'h12E4051D )
)u_INTERATION1(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X1         ),.Y0         ( Y1         ),.Z0         ( Z1         ),.X1         ( X2         ),.Y1         ( Y2         ),.Z1         ( Z2         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd2 ),.ANGLE      ( 32'h09FB385B )
)u_INTERATION2(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X2         ),.Y0         ( Y2         ),.Z0         ( Z2         ),.X1         ( X3         ),.Y1         ( Y3         ),.Z1         ( Z3         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd3 ),.ANGLE      ( 32'h051111D4 )
)u_INTERATION3(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X3         ),.Y0         ( Y3         ),.Z0         ( Z3         ),.X1         ( X4         ),.Y1         ( Y4         ),.Z1         ( Z4         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd4 ),.ANGLE      ( 32'h028B0D43 )
)u_INTERATION4(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X4         ),.Y0         ( Y4         ),.Z0         ( Z4         ),.X1         ( X5         ),.Y1         ( Y5         ),.Z1         ( Z5         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd5 ),.ANGLE      ( 32'h0145D7E1 )
)u_INTERATION5(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X5         ),.Y0         ( Y5         ),.Z0         ( Z5         ),.X1         ( X6         ),.Y1         ( Y6         ),.Z1         ( Z6         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd6 ),.ANGLE      ( 32'h00A2F61E )
)u_INTERATION6(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X6         ),.Y0         ( Y6         ),.Z0         ( Z6         ),.X1         ( X7         ),.Y1         ( Y7         ),.Z1         ( Z7         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd7 ),.ANGLE      ( 32'h00517C55 )
)u_INTERATION7(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X7         ),.Y0         ( Y7         ),.Z0         ( Z7         ),.X1         ( X8         ),.Y1         ( Y8         ),.Z1         ( Z8         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd8 ),.ANGLE      ( 32'h0028BE53 )
)u_INTERATION8(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X8         ),.Y0         ( Y8         ),.Z0         ( Z8         ),.X1         ( X9         ),.Y1         ( Y9         ),.Z1         ( Z9         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd9 ),.ANGLE      ( 32'h00145F2F )
)u_INTERATION9(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X9         ),.Y0         ( Y9         ),.Z0         ( Z9         ),.X1         ( X10         ),.Y1         ( Y10         ),.Z1         ( Z10         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd10 ),.ANGLE      ( 32'h000A2F98 )
)u_INTERATION10(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X10         ),.Y0         ( Y10         ),.Z0         ( Z10         ),.X1         ( X11         ),.Y1         ( Y11         ),.Z1         ( Z11         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd11 ),.ANGLE      ( 32'h000517CC )
)u_INTERATION11(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X11         ),.Y0         ( Y11         ),.Z0         ( Z11         ),.X1         ( X12         ),.Y1         ( Y12         ),.Z1         ( Z12         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd12 ),.ANGLE      ( 32'h00028BE6 )
)u_INTERATION12(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X12         ),.Y0         ( Y12         ),.Z0         ( Z12         ),.X1         ( X13         ),.Y1         ( Y13         ),.Z1         ( Z13         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd13 ),.ANGLE      ( 32'h000145F3 )
)u_INTERATION13(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X13         ),.Y0         ( Y13         ),.Z0         ( Z13         ),.X1         ( X14         ),.Y1         ( Y14         ),.Z1         ( Z14         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd14 ),.ANGLE      ( 32'h0000A2FA )
)u_INTERATION14(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X14         ),.Y0         ( Y14         ),.Z0         ( Z14         ),.X1         ( X15         ),.Y1         ( Y15         ),.Z1         ( Z15         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd15 ),.ANGLE      ( 32'h0000517D )
)u_INTERATION15(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X15         ),.Y0         ( Y15         ),.Z0         ( Z15         ),.X1         ( X16         ),.Y1         ( Y16         ),.Z1         ( Z16         )
);// iteration over always@(posedge clk or negedge rst_n)
beginif(rst_n == 0)for(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i] <= 0 ;elseif(ena == 1)beginfor(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i+1] <= quadrant[i] ;quadrant[0] <= phase_reg1[DATA_WIDTH - 1 : DATA_WIDTH - 2] ;end
end//------------------------------------------  \\//------------------------------------------  \\
//  Prevent overflow caused by small decimals and negative complement
//always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;// 
//   The results of different phases are also different//   phase[DATA_WIDTH -1 : DATA_WIDTH -2]//  00 first  quadrant//  01 second quadrant//  10 third  quadrant//  11 Fourth Quadrantalways@(posedge clk or negedge rst_n)
beginif(rst_n == 0)begincos_out <= 0 ;sin_out <= 0 ;endelse if( ena == 1)begincase(quadrant[16]) 2'b00 :begincos_out <= XN15 ;sin_out <= YN15 ;end2'b01 :begincos_out <= ~YN15 + 1'b1;sin_out <= XN15        ;end2'b10 :begincos_out <= ~XN15 + 1'b1  ;sin_out <= ~YN15 + 1'b1 ;end2'b11 :begincos_out <= YN15        ;sin_out <= ~XN15 + 1'b1 ;endendcaseend
end
endmodule

ITERATION.v

module INTERATION #(parameter   DATA_WIDTH       =    8'd32       ,parameter   shift            =    5'd0        ,parameter   ANGLE            =    32'h20000000)(input                                  clk     ,input                                  rst_n   ,input                                  ena     ,input       signed  [DATA_WIDTH - 1 : 0]      X0      ,input       signed  [DATA_WIDTH - 1 : 0]      Y0      ,input       signed  [DATA_WIDTH - 1 : 0]      Z0      ,output  reg signed  [DATA_WIDTH - 1 : 0]      X1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Y1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Z1);always@(posedge clk or negedge rst_n)beginif( rst_n == 0)beginX1 <= 0 ;Y1 <= 0 ;Z1 <= 0 ;endelse if( ena == 1)beginif(Z0[DATA_WIDTH - 1] == 0 )begin// X1 <= X0 - {{shift{ Y0[DATA_WIDTH - 1] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 + {{shift{ X0[DATA_WIDTH - 1] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 - (Y0>>>shift);Y1 <= Y0 + (X0>>>shift);Z1 <= Z0 - ANGLE                                                    ;endelse if(Z0[DATA_WIDTH - 1] == 1 )begin//X1 <= X0 + {{shift{ Y0[DATA_WIDTH - 1 ] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 - {{shift{ X0[DATA_WIDTH - 1 ] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 + (Y0>>>shift) ;Y1 <= Y0 - {X0>>>shift} ;Z1 <= Z0 + ANGLE                                                    ;endendendendmodule

CORDIC_tb.v

module cordic_tb #(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform    
);
reg                                 clk       ;
reg                                 rst_n     ;
reg          [DATA_WIDTH - 1 : 0]   phase     ;
reg                                 ena       ;
wire         [DATA_WIDTH - 1  : 0]   sin_out   ;
wire         [DATA_WIDTH - 1 : 0]   cos_out   ;integer i;
cordic32#(.DATA_WIDTH ( DATA_WIDTH ),.PIPELINE   ( PIPELINE )
)u_cordic32(.clk        ( clk        ),.rst_n      ( rst_n      ),.phase      ( phase      ),.ena        ( ena        ),.sin_out    ( sin_out    ),.cos_out    ( cos_out    )
);initial
begin#0 clk = 1'b0;ena   = 1'b1 ;#10 rst_n = 1'b0;#10 rst_n = 1'b1;#20000000 $stop;
end initial
beginrepeat(10)begin#0 phase = 32'd0;for(i=0;i<131072;i=i+1)begin#10;phase <= phase + 32'h8000;endend
end
always #10
beginclk = ~clk;
endendmodule 

README.md

在完成CORDIC的7次迭代之后 我在思考一个问题 8位进行了7次迭代 最后迭代至0号称没有误差了
我们是否可以通过 扩展至32位 进行多次迭代  将误差不断的缩小 本次数据参考至 网上的其他教程 我并没有自己去计算 我把结构优化一下 修改成更加便于理解使用的形式还有一件事 是 进制 与 Π 转化的问题 
对于 8位 其实我们 一开始将Π 设定为 1000_0000
那么对于 Π/4 是否就是1000_0000 的 四分之一 对于二进制 其实就是整体的数字进行移位 
我们将1000_0000 移动至 0010_0000 于此 而对于 32位我们32'h8000000 就是一个Π
而 32’h2000_0000 就是四分之Π 还有一件事 说明 我在写例化的时候 将数据完全完整的例化了下来 写的很长 这样并不是很好 
后面学习中 我看别人是 这么处理的 
genvar die;
generatefor (die = 0; die <Pipeline; die=die+1)begin: dieLoopalways @(posedge CLK_SYS or negedge RST_N)if (!RST_N) beginxn[die+1] <= 32'h0;yn[die+1] <= 32'h0;zn[die+1] <= 32'h0;endelse begin             if(zn[die][31]==1'b0)//角度符号判断beginxn[die+1] <= xn[die] - (yn[die]>>>die);yn[die+1] <= yn[die] + (xn[die]>>>die);zn[die+1] <= zn[die] - rot[die];  endelse beginxn[die+1] <= xn[die] + (yn[die]>>>die);yn[die+1] <= yn[die] - (xn[die]>>>die);zn[die+1] <= zn[die] + rot[die];  endendend
endgenerate# 还有一件事 对于溢出的考量 
我们所作溢出的考量 其实我们设定了32'h8000_0000 这既是Π的值 也是 1的设定 
但是在实际的运用和计算中 我们其实永远也达不到1 嘿嘿 
因为我们把最高位设计成了 符号位 
那么最大 也就是1 我们约等于 32'h7fff_ffff
这里需要注意的是[31:28] 是 7 也就是0111 非常重要的一个结论 我们最高位0代表了符号位
那么对于设计到第一象限的[31:30] 的值可以取 00 01 但是 10 11我们要对其进行合适的转化
所以便有了我们  对溢出的操作 always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;注意在设计的时候 定义成reg signed 的形式 将其设计为有符号位 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

相关文章:

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...

IntelliJ IDEA 2023.3 安装教程

引言 IntelliJ IDEA&#xff0c;通常简称为 IDEA&#xff0c;是由 JetBrains 开发的一款强大的集成开发环境&#xff0c;专为提升开发者的生产力而设计。它支持多种编程语言&#xff0c;包括 Java、Kotlin、Scala 和其他 JVM 语言&#xff0c;同时也为前端开发和移动应用开发提…...

Go 错误处理

Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型&#xff0c;这是它的定义&#xff1a; type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...

HarmonyOS构建第一个ArkTS应用(Stage模型)

构建第一个ArkTS应用&#xff08;Stage模型&#xff09; 创建ArkTS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...

故障排查利器-错误日志详解

目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分&#xff0c;记录了应用程序运行过程中发生的错误和异常信息&#xff0c;如错误类型…...

微信小程序(uniapp)api讲解

Uniapp是一个基于Vue.js的跨平台开发框架&#xff0c;可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解&#xff1a; Vue.js的API Uniapp采用了Vue.js框架&#xff0c;因此可以直接使用Vue.js的API。例如&#xff1a;v-show、v-if、v-for、comput…...

overtureDNS使用介绍

Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...

平衡二叉树的构建(递归

目录 1.概念&#xff1a;2.特点&#xff1a;3.构建方法&#xff1a;4.代码&#xff1a;小结&#xff1a; 1.概念&#xff1a; 平衡二叉树&#xff08;Balanced Binary Tree&#xff09;&#xff0c;也称为AVL树&#xff0c;是一种二叉树&#xff0c;它满足每个节点的左子树和右…...

flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果

flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候&#xff0c;可以使用bottomNavigationBar来设置中间凸起的按钮&#xff0c;如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器&#xff0c;通常与[Sscaf…...

不同参数规模大语言模型在不同微调方法下所需要的显存总结

原文来自DataLearnerAI官方网站&#xff1a; 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...

Crow:Middlewares 庖丁解牛6 middleware_call_helper

Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...

MyBatis:Generator

MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址&#xff1a;Introduction to MyBatis Generator Generator &#xff0c;一个用于 MyBatis 的代码生成工具&#xff0c;可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件&#xff0c;提高…...

rabbitmq的事务实现、消费者的事务实现

RabbitMQ提供了事务机制&#xff0c;可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作&#xff08;发送、确认、回滚&#xff09;作为一个原子操作&#xff0c;要么全部执行成功&#xff0c;要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...

龙芯杯个人赛串口——做一个 UART串口——RS-232

文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码&#xff1a; 4.RS-232 receiver…...

验证码服务使用指南

验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录&#xf…...

js中Math.min(...arr)和Math.max(...arr)的注意点

当arr变量为空数组时&#xff0c;这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...

【zookeeper特点和集群架构】

文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架&#xff0c;是Apache Hadoop 的一个子项目&#xff0c;主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...

MySQL集群架构搭建以及多数据源管理实战

MySQL集群架构搭建以及多数据源管理实战 ​ 数据库的分库分表操作&#xff0c;是互联网大型应用所需要面对的最核心的问题。因为数据往往是一个应用最核心的价值所在。但是&#xff0c;在最开始的时候&#xff0c;需要强调下&#xff0c;在实际应用中&#xff0c;对于数据库&a…...

C# WPF上位机开发(从demo编写到项目开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 C# WPF编程&#xff0c;特别是控件部分&#xff0c;其实学起来特别快。只是后面多了多线程、锁、数据库、网络这部分稍微复杂一点&#xff0c;不过…...

微信小程序引入 vant组件(详细步骤)

vant官方地址 https://vant-contrib.gitee.io/vant-weapp/#/quickstart 步骤一、 通过 npm 安装 # 通过 npm 安装 npm i vant/weapp -S --production# 通过 yarn 安装 yarn add vant/weapp --production# 安装 0.x 版本 npm i vant-weapp -S --production步骤二 修改 app.js…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...