数据结构之<堆>的介绍
1.简介
堆是一种特殊的数据结构,通常用于实现优先队列。堆是一个可以被看作近似完全二叉树的结构,并且具有一些特殊的性质,根据这些性质,堆被分为最大堆(或者大根堆,大顶堆)和最小堆两种。

2.基本性质
- 完全二叉树结构:堆必须是一棵完全二叉树,即除了最底层,其他层都是满的,而且最底层的节点都尽量靠左排列,最后一行元素之间不可以有间隔。
- 堆序性质: 堆分为最大堆和最小堆两种。在最大堆中,任意节点的值都大于或等于其子节点的值;在最小堆中,任意节点的值都小于或等于其子节点的值。
3.节点下标间的规律
因为堆是一棵完全二叉树若父节点的下标为i,则左子节点下标为2i+1,右子节点下标为2i+2,这个规律会在算法排序中经常使用。
4.堆的基本操作
上滤(Percolate Up)
上滤是指在堆中插入新元素后,通过一系列的比较和交换操作将该元素上移到合适的位置,以保持堆的堆序性。通常用于最小堆和最大堆中。
步骤:
- 将新元素插入到堆的末尾(底部)。
- 比较该元素与其父节点的值。
- 如果该元素的值比父节点的值更小(对于最小堆)或更大(对于最大堆),则交换它们。
- 重复步骤2和步骤3,直到满足堆的性质为止。
下滤(Percolate Down)
下滤是指在删除堆顶元素后,通过一系列的比较和交换操作将堆的最后一个元素(通常是堆底元素)移到堆顶,并将其下移到合适的位置,以保持堆的堆序性。
步骤:
- 将堆的最后一个元素(通常是堆底元素)移到堆顶。
- 比较该元素与其子节点中较小(对于最小堆)或较大(对于最大堆)的一个。
- 如果该元素的值比子节点的值更小(对于最小堆)或更大(对于最大堆),则交换它们。
- 重复步骤2和步骤3,直到满足堆的性质为止。
应用场景:
- 上滤: 通常在插入新元素时使用,确保新元素的插入不破坏堆的性质。
- 下滤: 通常在删除堆顶元素后使用,以恢复堆的性质。
堆化(Heapify)
堆化(Heapify)是指将一个无序的序列转换成一个堆,可以是最小堆或最大堆。堆化过程可以分为两种:自底向上堆化(Bottom-Up Heapify)和自顶向下堆化(Top-Down Heapify)。
自底向上堆化(Bottom-Up Heapify):
自底向上堆化是从序列的最后一个非叶子节点开始,逐步向前处理每个节点,使得以该节点为根的子树成为一个堆。该方法保证了子树堆化后,整个序列也是一个堆。
步骤:
-
从序列的最后一个非叶子节点开始(通常是 n/2-1,其中 n 是序列的长度)。
-
对每个非叶子节点,与其子节点比较,如果不满足堆的性质,则进行交换。
-
重复上述步骤,直到处理完整个序列。
自顶向下堆化(Top-Down Heapify):
自顶向下堆化是从序列的第一个元素开始,逐步向后处理每个节点,使得以该节点为根的子树成为一个堆。该方法保证了每个节点都满足堆的性质。
步骤:
-
从序列的第一个元素开始。
-
对每个节点,与其子节点比较,如果不满足堆的性质,则进行交换。
-
重复上述步骤,直到处理完整个序列。
应用场景:
- 建堆: 堆化是建立堆的关键步骤,可以在 O(n) 的时间复杂度内将一个无序序列转化为堆。
- 堆排序: 在堆排序算法中,首先对待排序序列进行堆化,然后反复取出堆顶元素,直到堆为空,实现排序。
- 优先队列: 堆被广泛应用于实现优先队列,堆化操作确保队列中优先级最高的元素位于队首。
推荐观看: 【从堆的定义到优先队列、堆排序】 10分钟看懂必考的数据结构——堆
相关文章:
数据结构之<堆>的介绍
1.简介 堆是一种特殊的数据结构,通常用于实现优先队列。堆是一个可以被看作近似完全二叉树的结构,并且具有一些特殊的性质,根据这些性质,堆被分为最大堆(或者大根堆,大顶堆)和最小堆两种。 2.…...
使用Ubuntu22+Minikube快速搭建K8S开发环境
安装Vmware 这一步,可以参考我的如下课程。 安装Ubuntu22 下载ISO镜像 这里我推荐从清华镜像源下载,速度会快非常多。 下载地址:https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/22.04.3/ 如果你报名了我的这门视频课程…...
【中小型企业网络实战案例 二】配置网络互连互通
【中小型企业网络实战案例 一】规划、需求和基本配置-CSDN博客 热门IT技术视频教程:https://xmws-it.blog.csdn.net/article/details/134398330?spm1001.2014.3001.5502 配置接入层交换机 1.以接入交换机ACC1为例,创建ACC1的业务VLAN 10和20。 <…...
Azure Machine Learning - Azure OpenAI GPT 3.5 Turbo 微调教程
本教程将引导你在Azure平台完成对 gpt-35-turbo-0613 模型的微调。 关注TechLead,分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师&…...
运维大模型探索之 Text2PromQL 问答机器人
作者:陈昆仪(图杨) 大家下午好,我是来自阿里云可观测团队的算法工程师陈昆仪。今天分享的主题是“和我交谈并获得您想要的PromQL”。今天我跟大家分享在将AIGC技术运用到可观测领域的探索。 今天分享主要包括5个部分:…...
虚拟机VMware:变动ip修改固定ip
1、配置ip地址 vi /etc/sysconfig/network-scripts/ifcfg-ens33修改为: 修改如下:TYPE"Ethernet" # 网络类型为以太网 BOOTPROTO"static" # 手动分配ip NAME"ens33" # 网卡…...
Docker部署Nexus Maven私服并实现远程访问Nexus界面
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定N…...
苏州科技大学计算机817程序设计(java) 学习笔记
之前备考苏州科技大学计算机(专业课:817程序设计(java))。 学习Java和算法相关内容,现将笔记及资料统一整理归纳移至这里。 部分内容不太完善,欢迎提议。 目录 考情分析 考卷题型 刷题攻略…...
虚幻学习笔记22—C++同步和异步加载
一、前言 之前提到的静态和动态加载都是同步的加载,同时其中的引用基本都是硬引用。如果资源比较大的话会出现卡顿的现象,下面将介绍一种异步加载的方式。同时,还将介绍一种区别与之前的Load的方法。 在说明同步和异步加载之前需要先讲一下虚…...
华清远见嵌入式学习——ARM——作业3
作业要求: 代码效果图: 代码: led.h #ifndef __LED_H__ #define __LED_H__#define RCC_GPIO (*(unsigned int *)0x50000a28) #define GPIOE_MODER (*(unsigned int *)0x50006000) #define GPIOF_MODER (*(unsigned int *)0x50007000) #defi…...
19.JavaSE
一、JavaSE。 (1)IO流。 1.字节字符流 2.标准流打印流对象流 (2)集合。 1.List/Set/Queue/Map集合 2.properties集合 (3)多线程。 1.线程创建的…...
仓库管理用什么软件
仓库管理是一个非常重要的话题,大到企业,小到个人,只要有货物的往来就会有仓库方面的管理,最为典型的就是货物的进出库存管理,这也是最为基础的仓库管理内容,那么仓库管理要用什么软件,从不同的…...
飞天使-k8s知识点8-kubernetes资源对象-编写中
文章目录 资源对象是k8s核心概念 资源对象是k8s核心概念 查看防火墙规则 32002 端口的去向 [rootkubeadm-master1 ~]# iptables -t nat -vnL |grep 32000 0 KUBE-MARK-MASQ tcp -- * * 0.0.0.0/0 0.0.0.0/0 /* kubernetes-dashboard/…...
Oracle Create user
sqlplus /nolog conn sys/pw123456orcl as sysdba CREATE USER zengwenfeng IDENTIFIED BY zengwenfeng ; GRANT ALL PRIVILEGES TO zengwenfeng ; COMMIT; C:\Users\Administrator>sqlplus /nologSQL*Plus: Release 11.2.0.1.0 Production on 星期日 12月 24 21:38:24 20…...
树莓派,mediapipe,Picamera2利用舵机云台追踪人手(PID控制)
一、项目目标 追踪人手大拇指指尖: 当人手移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把大拇指指尖放到视界的中心位置,本文采用了PID控制伺服电机 Mediapipe Hand简介 MediaPipe 手部标志任务可检测图像…...
DQL查询数据(超重点)以及distinct(去重)
DQL(Data Query Language:数据查询语言) 1.所有查询操作都用 SELECT 2.无论是简单的查询还是复杂的查询它都能做 3.数据库中最核心的语言,最重要的语句 4.使用频率最高的语句 语法: SELECT 字段1,字段2,……FROM 表 有时候…...
【网络奇缘】——奈氏准则和香农定理从理论到实践一站式服务|计算机网络
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 失真 - 信号的变化 影响信号失真的因素: 编辑 失真的一种现象:码间…...
MongoDB 根据 _id 获取记录的创建时间并回填记录中
MongoDB 集合 test1,有字段 _id,createTime,createTimeStr,name字段 , 查询createTime不为空的,根据 _id 生成该条记录的创建时间时间戳并填写到字段 createTime 字段中 ,并打印时间戳 // 查询 createTime…...
【开源】基于JAVA语言的独居老人物资配送系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询社区4.2 新增物资4.3 查询物资4.4 查询物资配送4.5 新增物资配送 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的独居老人物资配送系统,包含了社区档案、…...
网络7层架构
网络 7 层架构 什么是OSI七层模型? OSI模型用于定义并理解数据从一台计算机转移到另一台计算机,在最基本的形式中,两台计算机通过网线和连接器相互连接,在网卡的帮助下共享数据,形成一个网络,但是一台计算…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
