当前位置: 首页 > news >正文

生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

V.PhyloMaker2是一个R语言的工具包,专门用于构建和分析生物系统学中的进化树(也称为系统发育树或phylogenetic tree)。以下是对V.PhyloMaker2的一些基本介绍和使用说明:

论文介绍:V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants - ScienceDirect

 github仓库代码:jinyizju/V.PhyloMaker2: This package (an updated version of 'V.PhyloMaker') can generate a phylogenetic tree for vascular plants based on three different botanical nomenclature systems. (github.com)

介绍:

V.PhyloMaker2提供了一系列的函数和方法,帮助用户处理和分析分子序列数据,包括但不限于:

  1. 数据预处理:对分子序列数据进行质量控制、格式转换和多重比对。
  2. 进化树构建:支持多种流行的进化树构建方法,如最大似然法(Maximum Likelihood)、贝叶斯推断法(Bayesian Inference)等。
  3. 进化树优化:通过搜索最优的树形结构和参数组合来提高进化树的准确性。
  4. 进化树可视化:提供丰富的图形选项来定制和美化进化树的显示。
  5. 树形数据分析:包括节点支持度评估、分支长度分析、祖先状态重建等。

详细使用:

由于V.PhyloMaker2的具体使用会涉及到具体的代码操作和数据分析过程,以下是一些基本的使用步骤:

  1. 安装V.PhyloMaker2: 在R环境中,使用install.packages("V.PhyloMaker2")命令来安装这个包。

    #BioManager安装
    if (!requireNamespace("BiocManager", quietly = TRUE))install.packages("BiocManager")
    BiocManager::install("V.PhyloMaker2")#github 安装
    install.packages("devtools")library(devtools)
    install_github("JinYongJiang/V.PhyloMaker")
  2. 加载V.PhyloMaker2: 安装后,使用library(V.PhyloMaker2)命令来加载这个包。

  3. 数据预处理: 根据你的数据类型和格式,使用相应的函数进行数据导入和预处理。例如,如果你的数据是fasta格式的序列文件,可以使用read.FASTA()函数将其读入R。

    # 导入数据:首先,你需要将你的序列数据导入到R中。这通常是以fasta或 nexus格式存储的。
    library(ape)
    sequences <- read.fasta("your_file.fasta")#数据清理:检查并处理缺失数据、异质性(例如,核苷酸替换)、和错误。
    # 查看是否存在任何缺失数据
    sum(is.na(sequences))# 如果存在缺失数据,可以考虑删除含有缺失数据的行
    sequences <- sequences[!apply(sequences, 1, function(x) any(is.na(x))), ]# 或者用某种方法填补缺失数据(例如,通过平均或中位数)
    sequences[is.na(sequences)] <- median(sequences, na.rm = TRUE)
  4. 多重比对: 使用muscle()或其他比对函数对序列进行比对。

    #序列对齐:对于DNA或蛋白质序列,你需要进行序列对齐。
    aligned_sequences <- muscle(sequences)#转换为距离矩阵:将对齐后的序列转换为距离矩阵,这通常是后续构建系统发育树的步骤。
    dist_matrix <- dist.dna(aligned_sequences)
  5. 进化树构建: 使用build.tree()或其他相关函数,根据你的数据和研究目标选择合适的树构建方法。

    # 假设您已经有了一个包含序列数据的数据框df,并且列名是物种名称
    # df <- data.frame(sequence1, sequence2, ..., sequenceN)
    # 或前面的 data_matrix# 使用build.tree()函数构建进化树
    # 这里的参数是假设的,实际参数需要参考V.PhyloMaker包的文档
    tree <- build.tree(data = df(或data_matrix), seq_type = "dna",   # 数据类型,可以是"dna"、"rna"或"protein"method = "neighbor_joining",  # 构建树的方法,例如"neighbor_joining"(邻接法)或"maximum_likelihood"(最大似然法)distance_method = "kimura")  # 距离计算方法,例如"kimura"(金氏距离)
  6. 进化树优化: 对构建的初步树进行优化,例如使用optimize.tree()函数。

    # 假设你已经使用 build.tree() 建立了一个决策树模型
    # 假设 tree_model 是你建立的模型# 查看建立的树的概况
    summary(tree_model)# 根据交叉验证选择最佳的剪枝参数
    prune_model <- prune.tree(tree_model)# 查看剪枝后的树的概况
    summary(prune_model)# 如果需要,你可以根据需要进一步调整剪枝参数
    
  7. 进化树可视化: 使用plot.tree()函数将进化树可视化,并通过调整各种参数来定制图形。

    # 可视化决策树并调整参数
    plot(tree_model, type = "uniform", fsize = 0.8, cex = 0.8, label = "all")# 添加各种参数以定制图形
    plot(my_tree,type = "fan",       # 树的类型,可以是"phylogram"(分支长度代表进化时间)、"cladogram"(所有分支长度相等)或"fan"(扇形树)show.tip.label = TRUE,  # 是否显示叶节点的标签edge.width = 2,      # 分支线的宽度edge.color = "black",   # 分支线的颜色tip.color = "blue",    # 叶节点的颜色no.margin = TRUE,    # 是否移除图形边框cex = 0.8,           # 标签的字体大小font = 2,            # 标签的字体类型main = "My Evolutionary Tree",  # 图形的标题sub = "Customized with plot() function")  # 图形的副标题
  8. 树形数据分析: 根据你的研究问题,选择相应的函数进行树形数据分析,如节点支持度评估、分支长度分析等。

    # 安装并加载相关包
    install.packages("ape")
    install.packages("phytools")
    library(ape)
    library(phytools)# 假设 tree 是你的树形数据# 计算节点支持度
    bootstrap_tree <- bootstrap.phylo(tree, FUN = your_function_for_tree, B = 100)  # your_function_for_tree 是用于估计树的函数# 生成共识树
    consensus_tree <- consensus(bootstrap_tree)# 计算树的相似性矩阵
    coph_matrix <- cophenetic(tree)# 绘制共演化历史图
    cophyloplot(tree1, tree2)
    

补充分析示例:

树形数据分析可以使用R中的多个包来实现,例如apephangornggtree等。下面是一个简单的示例代码,使用了ape包来进行树形数据分析。

首先,我们需要安装并加载ape包:

install.packages("ape")
library(ape)

接下来,我们可以根据需求读取树形数据。假设我们有一棵简单的进化树,包含5个物种,并且我们想要计算节点的支持度值:

# 创建一个简单的进化树
tree <- rtree(5)# 计算节点的支持度值
supports <- node.depths(tree)

接下来,我们可以绘制树形图,并标记节点的支持度值:

# 绘制树形图
plot(tree, show.node.label = TRUE)# 标记节点支持度值
nodelabels(round(supports, 2), bg = "white")

要分析分支长度,我们可以使用cophenetic.phylo()函数计算树的协同形态矩阵,然后使用plot()函数绘制分支长度图:

# 计算协同形态矩阵
cophenetic_matrix <- cophenetic(tree)# 绘制分支长度图
plot(cophenetic_matrix, main = "Branch Lengths", xlab = "Pairwise Distances")

相似工具包S.PhyloMaker

S.PhyloMaker的介绍和使用看这里:种系进化树分析和构建工具R工具包S.phyloMaker的介绍和详细使用方法-CSDN博客

相关文章:

生物系统学中的进化树构建和分析R工具包V.PhyloMaker2的介绍和详细使用

V.PhyloMaker2是一个R语言的工具包&#xff0c;专门用于构建和分析生物系统学中的进化树&#xff08;也称为系统发育树或phylogenetic tree&#xff09;。以下是对V.PhyloMaker2的一些基本介绍和使用说明&#xff1a; 论文介绍&#xff1a;V.PhyloMaker2: An updated and enla…...

XStream 反序列化漏洞 CVE-2021-39144 已亲自复现

XStream 反序列化漏洞 CVE-2021-39144 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建 修复建议总结 漏洞名称 漏洞描述 在Unmarshalling Time处包含用于重新创建前一对象的类型信息。XStream基于这些类型的信息创建新实例。攻击者可以控制输入流并替换或注入对象&am…...

深入剖析LinkedList:揭秘底层原理

文章目录 一、 概述LinkedList1.1 LinkedList简介1.2 LinkedList的优点和缺点 二、 LinkedList数据结构分析2.1 Node节点结构体解析2.2 LinkedList实现了双向链表的原因2.3 LinkedList如何实现了链表的基本操作&#xff08;增删改查&#xff09;2.4 LinkedList的遍历方式 三、 …...

计算机网络复习-OSI TCP/IP 物理层

我膨胀了&#xff0c;挂我啊~ 作者简介&#xff1a; 每年都吐槽吉师网安奇怪的课程安排、全校正经学网络安全不超20人情景以及割韭菜企业合作的FW&#xff0c;今年是第一年。。 TCP/IP模型 先做两道题&#xff1a; TCP/IP协议模型由高层到低层分为哪几层&#xff1a; 这题…...

虚拟机服务器中了lockbit2.0/3.0勒索病毒怎么处理,数据恢复应对步骤

网络技术的不断发展也为网络威胁带来了安全隐患&#xff0c;近期&#xff0c;对于许多大型企业来说&#xff0c;许多企业的虚拟机服务器系统遭到了lockbit2.0/3.0勒索病毒攻击&#xff0c;导致企业所有计算机系统瘫痪&#xff0c;无法正常工作&#xff0c;严重影响了企业的正常…...

【MATLAB】 RGB和YCbCr互转

前言 在视频、图像处理领域经常会遇到不同色域图像的转换&#xff0c;比如RGB、YUV、YCbCr色域间的转换&#xff0c;这里提供一组转换公式&#xff0c;供大家参考。 色彩模型 RGB RGB色彩模型是一种用于表示数字图像的颜色空间&#xff0c;其中"RGB"代表红色&…...

【线性代数】决定张成空间的最少向量线性无关吗?

答1&#xff1a; 是的&#xff0c;张成空间的最少向量是线性无关的。 在数学中&#xff0c;张成空间&#xff08;span space&#xff09;是一个向量空间&#xff0c;它由一组向量通过线性组合&#xff08;即每个向量乘以一个标量&#xff09;生成。如果这组向量是线性无关的&…...

暴力破解(Pikachu)

基于表单的暴力破解 先随便输入一下&#xff0c;然后抓包&#xff0c;进行字典爆破 验证码绕过(on server) server服务端要输入正确的验证码后进行爆破 之后的操作没什么不一样 验证码绕过(on client) 这个也需要输入验证码&#xff0c;但是后面进行字典爆破的时候&#xf…...

如何使用CMake查看opencv封装好的函数

当我们有时想查看opencv自带的函数的源代码&#xff0c;比如函数cvCreateImage, 此时我们选中cvCreateImage, 点击鼠标右键->转到定义&#xff0c;我们会很惊讶的发现为什么只看到了cvCreateImage的一个简单声明&#xff0c;而没有源代码呢&#xff1f;这是因为openCV将很多…...

微盛·企微管家:用户运营API集成,电商无代码解决方案

连接电商平台的新纪元&#xff1a;微盛企微管家 随着电子商务的蓬勃发展&#xff0c;电商平台的高效运营已经成为企业成功的关键。在这个新纪元里&#xff0c;微盛企微管家以其创新的无代码开发连接方案&#xff0c;成为企业之间连接电商平台的强大工具。它允许企业轻松集成电…...

Hive 部署

一、介绍 Apache Hive是一个分布式、容错的数据仓库系统&#xff0c;支持大规模的分析。Hive Metastore&#xff08;HMS&#xff09;提供了一个中央元数据存储库&#xff0c;可以轻松地进行分析&#xff0c;以做出明智的数据驱动决策&#xff0c;因此它是许多数据湖架构的关键组…...

CopyOnWriteArrayList源码阅读

1、构造方法 无参构造函数 //创建一个空数组&#xff0c;赋值给array引用 public CopyOnWriteArrayList() {setArray(new Object[0]); }//仅通过getArray / setArray访问的数组。 private transient volatile Object[] array;//设置数组 final void setArray(Object[] a) {arra…...

Windows操作系统:共享文件夹,防火墙的设置

1.共享文件夹 1.1 共享文件夹的优点 1.2 共享文件夹的优缺点 1.3 实例操作 ​编辑 2.防火墙设置 2.1 8080端口设置 3.思维导图 1.共享文件夹 1.1 共享文件夹的优点 优点 协作和团队合作&#xff1a;共享文件夹使多个用户能够在同一文件夹中协作和编辑文件。这促进了团…...

STM32独立看门狗

时钟频率 40KHZ 看门狗简介 STM32F10xxx 内置两个看门狗&#xff0c;提供了更高的安全性、时间的精确性和使用的灵活性。两个看 门狗设备 ( 独立看门狗和窗口看门狗 ) 可用来检测和解决由软件错误引起的故障&#xff1b;当计数器达到给 定的超时值时&#xff0c;触发一个中…...

财务数据智能化:用AI工具高效制作财务分析PPT报告

Step1: 文章内容提取 WPS AI 直接打开文件&#xff0c;在AI对话框里输入下面指令&#xff1a; 假设你是财务总监&#xff0c;公司考虑与茅台进行业务合作、投资或收购&#xff0c;请整合下面茅台2021年和2022年的财务报告信息。整理有关茅台财务状况和潜在投资回报的信息&…...

vue3中使用three.js记录

记录一下three.js配合vitevue3的使用。 安装three.js 使用npm安装&#xff1a; npm install --save three开始使用 1.定义一个div <template><div ref"threeContainer" class"w-full h-full"></div> </template>可以给这个di…...

MySQL——表的内外连接

目录 一.内连接 二.外连接 1.左外连接 2.右外连接 一.内连接 表的连接分为内连和外连 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选&#xff0c;我们前面学习的查询都是内连接&#xff0c;也是在开发过程中使用的最多的连接查询。 语法&#xff1a; s…...

基于IPP-FFT的线性调频Z(Chirp-Z,CZT)的C++类库封装并导出为dll(固定接口支持更新)

上一篇分析了三种不同导出C++类方法的优缺点,同时也讲了如何基于IPP库将FFT函数封装为C++类库,并导出为支持更新的dll库供他人调用。 在此基础上,结合前面的CZT的原理及代码实现,可以很容易将CZT变换也封装为C++类库并导出为dll,关于CZT的原理和实现,如有问题请参考: …...

【C语言】指针

基本概念 在C语言中&#xff0c;指针是一种非常重要的数据类型&#xff0c;它用于存储变量的内存地址。指针提供了对内存中数据的直接访问&#xff0c;使得在C语言中可以进行灵活的内存操作和数据传递。以下是关于C语言指针的一些基本概念&#xff1a; 1. 指针的声明&#xff…...

PostgreSql 索引使用技巧

索引种类详情可参考《PostgreSql 索引》 一、适合创建索引的场景 经常与其他表进行连接的表&#xff0c;在连接字段上应该建索引。经常出现在 WHERE 子句中的字段&#xff0c;特别是大表的字段&#xff0c;应该建索引。经常出现在 ORDER BY 子句中的字段&#xff0c;应该建索…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...