当前位置: 首页 > news >正文

EfficientNet

时间:2019

EfficicentNet网络简介

EfficientNet:Rethinking Model Scaling for Convolutional Neural Networksicon-default.png?t=N7T8https://arxiv.org/abs/1905.11946,这篇论文是Google在2019年发表的文章。

EfficientNet这篇论文,作者同时关于输入分辨率,网络深度,宽度对准确率的影响,在之前的文章中是单独增加图像分辨率或增加网络深度或单独增加网络的宽度,来试着提升网络的准确率。在EfficientNet这篇论文中,作者使用了网络搜索技术NAS去同时探索输入分辨率,网络深度、宽度的影响。

EfficientNet的效果究竟如何呢?

这幅图是原论文作者给出的关于Efficient以及当时主流的一系列分类网络的Top-1的准确率,我们发现EfficientNet不仅在参数数量上比很多主流模型要小以外,准确率明显也要更好

  • 论文中提到,本文提出的EfficientNet-B7在ImageNet top-1达到了当年最高的准确率84.3%,与之前准确率最高的GPipe相比,参数数量仅为其1/8.4,推理速度提升了6.1

网络对比(宽度、深度、分辨率)

  • 根据以往的经验,增加网络的深度depth能够得到更加丰富、复杂的特征并且能够很好的应用到其他任务中。但网络的深度过深会面临梯度消失,训练困难的问题。
  • 增加网络的width能够获得更细粒度的特征并且也更容易训练,但对于width很大而且深度较浅的网络往往很难学习到更深层次的特征。
  • 增加输入网络的图像分辨率能够潜在得获得更高细粒度的特征模板,但对于非常高的输入分辨率,准确度的增益也会减少。并且大分辨率图像会增加计算量。

从上图可以看出,scale by width,scale by depth,scale by resolution,发现这三条虚线基本上在准确率达到80%以后基本上就饱和了不在增加了。对于红色的线,我们同时增加网络的宽度、深度、分辨率,我们发现它达到了80%的准确率后并没有出现饱和的现象,并且还可以继续增长上去。这就说明了我们同时增加网络的深度、宽度、分辨率的话,我们是可以得到一个更好的结果的.

性能对比

  • EfficientNet-B0对比的是我们ResNet-50以及我们DenseNet-169,我们可以看到它的准确率是最高的,参数量是最少的,它的理论上的计算量是最低的。同样B1~B7都对一系列网络进行了对比
  • 不过在实际使用过程中,首先它的准确率确实是挺高的,然后它的参数个数确实也很少,这是毋庸置疑的。但是有个问题网络训练时非常占GPU的显存,因为在我们EfficientNet中像B4,B5,B6,B7这些模型,它的输入图片的分辨率非常大导致我们每一个层结构输出特征矩阵的高和宽都要相应的增加。所以对于我们显存的占用也会增加。
  • 而且对于速度直接对比Flops是不完全对的,真实情况下我们所关注的速度其实是在设备上的推理的速度;真实的推理速度和Flops其实不是直接相关的,它还有很多其他因素的影响,所以如果你能给出在某些设备上它的推理时间的话会更加有意义

相关文章:

EfficientNet

时间:2019 EfficicentNet网络简介 EfficientNet:Rethinking Model Scaling for Convolutional Neural Networkshttps://arxiv.org/abs/1905.11946,这篇论文是Google在2019年发表的文章。 EfficientNet这篇论文,作者同时关于输入分辨率,网络…...

百度每天20%新增代码由AI生成,Comate SaaS服务8000家客户 采纳率超40%

12月28日,由深度学习技术及应用国家工程研究中心主办的WAVE SUMMIT深度学习开发者大会2023在北京召开。百度首席技术官、深度学习技术及应用国家工程研究中心主任王海峰现场公布了飞桨文心五载十届最新生态成果,文心一言最新用户规模破1亿,截…...

产品管理-学习笔记-版本的划分

版本号说明【X.Y.Z_修饰词】 版本号定义原则X表示大版本号,一般当产品出现重大更新、调整、不再向后兼容的情况时我们会在X上加1Y表示功能更新,在产品原有的基础上增加、修改部分功能,且并不影响产品的整体流程或业务Z表示小修改&#xff0c…...

编程笔记 html5cssjs 004 我的第一个页面

编程笔记 html5&css&js 004 我的第一个页面 一、基本结构二、HTML标签三、HTML元素四、HTML属性五、编写第一个网页六、使用VSCODE小结 开始编写网页,并且使用第一个网页成为一个母板,用于完成后续内容的学习。有一个基本要求,显示结…...

为实体服务器配置Ubuntu

简介 我们在使用虚拟机时,直接在网上找到镜像然后下载到本地,在VMware创建实例时将该iso文件作为镜像源然后进行基础配置就可以轻松安装配置好Linux虚拟机。 在为实体服务器安装Linux系统,同样的,我们也需要镜像源(即…...

单例模式的双重检查锁定是什么?

单例模式的双重检查锁定是什么? 单例模式是一种常见的设计模式,用于确保一个类只有一个实例,并提供一个全局访问点。双重检查锁定(Double-Checked Locking)是一种在单例模式中使用的性能优化技术。 在传统的单例模式…...

hyper-v ubuntu 3节点 k8s集群搭建

前奏 搭建一主二从的k8s集群,如图所示,准备3台虚拟机。 不会创建的同学,可以看我上上篇博客:https://blog.csdn.net/dawnto/article/details/135086252 和上篇博客:https://blog.csdn.net/dawnto/article/details/135…...

postman进阶使用

前言 对于postman的基础其实很容易上手实现,也有很多教程。 对于小编我来说,也基本可以实现开发任务。 但是今年我们的高级测试,搞了一下postman,省去很多工作,让我感觉很有必要学一下 这篇文章是在 高级测试工程师ht…...

errors包返回堆栈信息的性能测试

errors包返回堆栈信息的性能测试 上一篇Golang中使用errors返回调用堆栈信息 讲了使用第三方开源库的errors github.com/go-errors/errors,错误信息带调用栈,方便定位错误的抛出位置。 通过堆栈的信息来定位是方便了,性能怎么样&#xff0c…...

力扣热题100道-哈希篇

哈希 1.两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你…...

YOLOv7+Pose姿态估计+tensort部署加速

YOLOv7是一种基于深度学习的目标检测算法,它能够在图像中准确识别出不同目标的位置和分类。而姿态估计pose和tensort则是一种用于实现人体姿态估计的算法,可以对人体的关节位置和方向进行精准的检测和跟踪。 下面我将分点阐述YOLOv7姿态估计posetensort…...

gitee+picgo+typora图床搭建

giteepicgotypora图床搭建 1.安装typora 官网下载直接安装:https://www.typora.io/#download 2.编辑typora图像设置 打开 文件 -> 偏好设置 -> 图像设置 插入图片时 选择 上传图片设置 上传服务 为 PicGo-Core(command line) 3.为typora安装PicGo-Core 点…...

Flink项目实战篇 基于Flink的城市交通监控平台(上)

系列文章目录 Flink项目实战篇 基于Flink的城市交通监控平台(上) Flink项目实战篇 基于Flink的城市交通监控平台(下) 文章目录 系列文章目录1. 项目整体介绍1.1 项目架构1.2 项目数据流1.3 项目主要模块 2. 项目数据字典2.1 卡口…...

thinkcmf 文件包含 x1.6.0-x2.2.3 已亲自复现

thinkcmf 文件包含 x1.6.0-x2.2.3 CVE-2019-16278 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 漏洞名称 漏洞描述 ThinkCMF是一款基于PHPMYSQL开发的中文内容管理框架,底层采用ThinkPHP3.2.3构建。ThinkCMF提出灵活的应用机制&a…...

本地部署 text-generation-webui

本地部署 text-generation-webui 0. 背景1. text-generation-webui 介绍2. 克隆代码3. 创建虚拟环境4. 安装 pytorch5. 安装 CUDA 运行时库6. 安装依赖库7. 启动 Web UI8. 访问 Web UI9. OpenAI 兼容 API 0. 背景 一直喜欢用 FastChat 本地部署大语言模型,今天试一…...

C语言实验1:C程序的运行环境和运行C程序的方法

一、算法原理 这是学C语言的入门,并不需要很高深的知识,一个hello world 或者一个简单的加法即可 二、实验要求 了解所用的计算机系统的基本操作方法,学会独立使用该系统。 了解在该系统上如何编辑、编译、连接和运行一个C程序。 通过运…...

「微服务」微服务架构中的数据一致性

在微服务中,一个逻辑上原子操作可以经常跨越多个微服务。即使是单片系统也可能使用多个数据库或消息传递解决方案。使用多个独立的数据存储解决方案,如果其中一个分布式流程参与者出现故障,我们就会面临数据不一致的风险 - 例如在未下订单的情…...

ARCGIS PRO SDK 要素空间关系

一、要素与要素查询,返回的是bool值 1、 Touches 判断几何要素是否接触 Touches 如果 geometry1 与 geometry2 接触,则返回 true,否则 false。 touches GeometryEngine.Instance.Touches(Geometry1, Geometry2) 2、…...

Python面向对象高级与Python的异常、模块以及包管理

Python面向对象高级与Python的异常、模块以及包管理 一、Python中的继承 1、什么是继承 我们接下来来聊聊Python代码中的“继承”:类是用来描述现实世界中同一组事务的共有特性的抽象模型,但是类也有上下级和范围之分,比如:生物 => 动物 => 哺乳动物 => 灵长型…...

Python 爬取 哔站视频弹幕 并实现词云图可视化

嗨喽,大家好呀~这里是爱看美女的茜茜呐 环境介绍: python 3.8 解释器 pycharm 编辑器 第三方模块: requests >>> pip install requests protobuf >>> pip install protobuf 如何安装python第三方模块: win R 输入 cmd 点击确定, 输入安装命…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...