当前位置: 首页 > news >正文

做网站工作室/吉林关键词优化的方法

做网站工作室,吉林关键词优化的方法,让别人做网站推广需要多少钱,教育系统网站cms下文是阅读《深入理解Java虚拟机(第3版)》这本书的读书笔记,如有侵权,请联系删除。 文章目录 第2章 Java内存区域与内存溢出异常2.2 运行时数据区域2.3 HotSpot虚拟机对象探秘 第3章 垃圾收集器与内存分配策略3.2 对象已死&…

下文是阅读《深入理解Java虚拟机(第3版)》这本书的读书笔记,如有侵权,请联系删除。

在这里插入图片描述

文章目录

  • 第2章 Java内存区域与内存溢出异常
    • 2.2 运行时数据区域
    • 2.3 HotSpot虚拟机对象探秘
  • 第3章 垃圾收集器与内存分配策略
    • 3.2 对象已死?
    • 3.3 垃圾收集算法
    • 3.5 经典垃圾收集器
    • 3.6 低延迟垃圾收集器
  • 后记

第2章 Java内存区域与内存溢出异常

2.2 运行时数据区域

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而一直存在,有些区域则是依赖用户线程的启动和结束而建立和销毁。下图为Java虚拟机运行时数据区。

在这里插入图片描述

2.2.1 程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

2.2.2 Java虚拟机栈

与程序计数器一样,Java虚拟机栈(Java Virtual MachineStack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
经常有人把Java内存区域笼统地划分为堆内存(Heap)和栈内存(Stack),这种划分方式直接继承自传统的C、C++程序的内存布局结构,在Java语言里就显得有些粗糙了,实际的内存区域划分要比这更复杂。不过这种划分方式的流行也间接说明了程序员最关注的、与对象内存分配关系最密切的区域是“堆”和“栈”两块。其中,“堆”在稍后笔者会专门讲述,而“栈”通常就是指这里讲的虚拟机栈,或者更多的情况下只是指虚拟机栈中局部变量表部分。
局部变量表存放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。
这些数据类型在局部变量表中的存储空间以局部变量槽(Slot)来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其余的数据类型只占用一个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

2.2.3 本地方法栈

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

2.2.4 Java堆

对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作“GC堆”(Garbage Collected Heap,幸好国内没翻译成“垃圾堆”)。

2.2.5 方法区

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。

2.2.6 运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
Java虚拟机对于Class文件每一部分(自然也包括常量池)的格式都有严格规定,如每一个字节用于存储哪种数据都必须符合规范上的要求才会被虚拟机认可、加载和执行,但对于运行时常量池,《Java虚拟机规范》并没有做任何细节的要求,不同提供商实现的虚拟机可以按照自己的需要来实现这个内存区域,不过一般来说,除了保存Class文件中描述的符号引用外,还会把由符号引用翻译出来的直接引用也存储在运行时常量池中。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是说,并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可以将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

2.3 HotSpot虚拟机对象探秘

2.3.1 对象的创建

Java是一门面向对象的编程语言,Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象通常(例外:复制、反序列化)仅仅是一个new关键字而已,而在虚拟机中,对象(文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?

当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务实际上便等同于把一块确定大小的内存块从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)。但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有空间压缩整理(Compact)的能力决定。因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CMS这种基于清除(Sweep)算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。

除如何划分可用空间之外,还有另外一个需要考虑的问题:对象创建在虚拟机中是非常频繁的行为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题有两种可选方案:一种是对分配内存空间的动作进行同步处理——实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性;另外一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓存区时才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。

内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值,如果使用了TLAB的话,这一项工作也可以提前至TLAB分配时顺便进行。这步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。

接下来,Java虚拟机还要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码(实际上对象的哈希码会延后到真正调用Object::hashCode()方法时才计算)、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了。但是从Java程序的视角看来,对象创建才刚刚开始——构造函数,即Class文件中的()方法还没有执行,所有的字段都为默认的零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。一般来说(由字节码流中new指令后面是否跟随invokespecial指令所决定,Java编译器会在遇到new关键字的地方同时生成这两条字节码指令,但如果直接通过其他方式产生的则不一定如此),new指令之后会接着执行()方法,按照程序员的意愿对对象进行初始化,这样一个真正可用的对象才算完全被构造出来。

2.3.2 对象的内存布局

在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

HotSpot虚拟机对象的对象头部分包括两类信息。第一类是用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32个比特和64个比特,官方称它为“MarkWord”。对象需要存储的运行时数据很多,其实已经超出了32、64位Bitmap结构所能记录的最大限度,但对象头里的信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个有着动态定义的数据结构,以便在极小的空间内存储尽量多的数据,根据对象的状态复用自己的存储空间。

对象头的另外一部分是类型指针,即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身。

接下来实例数据部分是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。

对象的第三部分是对齐填充,这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是任何对象的大小都必须是8字节的整数倍。对象头部分已经被精心设计成正好是8字节的倍数(1倍或者2倍),因此,如果对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。

2.3.3 对象的访问定位

创建对象自然是为了后续使用该对象,我们的Java程序会通过栈上的reference数据来操作堆上的具体对象。由于reference类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用,并没有定义这个引用应该通过什么方式去定位、访问到堆中对象的具体位置,所以对象访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种:
· 如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息,其结构如下图所示。

在这里插入图片描述

· 如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销,如下图所示。

在这里插入图片描述

这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销,由于对象访问在Java中非常频繁,因此这类开销积少成多也是一项极为可观的执行成本。

第3章 垃圾收集器与内存分配策略

3.2 对象已死?

垃圾收集器在对堆进行回收前,第一件事情就是要确定堆中对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)

3.2.1 引用计数算法

在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。

局限:单纯的引用计数就很难解决对象之间相互循环引用的问题。

3.2.2 可达性分析算法

这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。下图为利用可达性分析算法判定对象是否可回收的例子。

在这里插入图片描述

3.3 垃圾收集算法

3.3.1 分代收集理论

当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”(Generational Collection)的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在分代假说之上:
1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。

2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。

3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

把分代收集理论具体放到现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)老年代(Old Generation) 两个区域。顾名思义,在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。

3.3.2 标记-清除算法

算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

它的主要缺点有两个:第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

3.3.3 标记-复制算法
标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题,1969年Fenichel提出了一种称为“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进足够的连续内存而不得不提前触发另一次垃圾收集动作。

现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。在1989年,Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。

Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。

3.3.4 标记-整理算法

针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。

3.5 经典垃圾收集器

下图为HotSpot虚拟机的垃圾收集器。

在这里插入图片描述

3.5.1 Serial收集器

在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。

3.5.2 ParNew收集器

ParNew收集器实质上是Serial收集器的多线程并行版本。

在谈论垃圾收集器的上下文语境中,并行和并发可以理解为:
· 并行(Parallel):并行描述的是多条垃圾收集器线程之间的关系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
· 并发(Concurrent):并发描述的是垃圾收集器线程与用户线程之间的关系,说明同一时间垃圾收集器线程与用户线程都在运行。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。

3.5.3 Parallel Scavenge收集器

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。

3.5.4 Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。

3.5.5 Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

3.5.6 CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1)初始标记(CMS initial mark)
2)并发标记(CMS concurrent mark)
3)重新标记(CMS remark)
4)并发清除(CMS concurrent sweep)

3.5.7 Garbage First收集器

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。

JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。

如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:
· 初始标记
(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
· 并发标记
(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
· 最终标记
(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
· 筛选回收
(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。
从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟。

3.6 低延迟垃圾收集器

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的,一款优秀的收集器通常最多可以同时达成其中的两项。

3.6.1 Shenandoah收集器

Shenandoah相比起G1有什么改进呢?虽然Shenandoah也是使用基于Region的堆内存布局,同样有着用于存放大对象的Humongous Region,默认的回收策略也同样是优先处理回收价值最大的Region……但在管理堆内存方面,它与G1至少有三个明显的不同之处,最重要的当然是支持并发的整理算法,G1的回收阶段是可以多线程并行的,但却不能与用户线程并发。其次,Shenandoah(目前)是默认不使用分代收集的,换言之,不会有专门的新生代Region或者老年代Region的存在,没有实现分代,并不是说分代对Shenandoah没有价值,这更多是出于性价比的权衡,基于工作量上的考虑而将其放到优先级较低的位置上。最后,Shenandoah摒弃了在G1中耗费大量内存和计算资源去维护的记忆集,改用名为“连接矩阵”(Connection Matrix)的全局数据结构来记录跨Region的引用关系,降低了处理跨代指针时的记忆集维护消耗,也降低了伪共享问题的发生概率。

3.6.2 ZGC收集器

ZGC和Shenandoah的目标是高度相似的,都希望在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟。

给ZGC下一个这样的定义来概括它的主要特征:ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器。

后记

下面截图是笔者阅读本书的记录,多年以后回看会有不同的感触。
在这里插入图片描述

相关文章:

《深入理解Java虚拟机(第三版)》读书笔记:Java内存区域与内存溢出异常、垃圾收集器与内存分配策略

下文是阅读《深入理解Java虚拟机(第3版)》这本书的读书笔记,如有侵权,请联系删除。 文章目录 第2章 Java内存区域与内存溢出异常2.2 运行时数据区域2.3 HotSpot虚拟机对象探秘 第3章 垃圾收集器与内存分配策略3.2 对象已死&…...

android 手机主界面侧滑退出app问题

最近重新搭了个app,发现手机显示APP主界面时,沿着手机右边向左滑,会直接关闭应用,所以想搞个第一次提示,第二次退出app的效果。 结果搞出个复杂的东西,下面是两段代码。1: 1:GestureDetector扩展函数。其…...

spring boot 配置全局日期和时间格式

spring boot 为项目配置 全局日期和时间格式化yyyy-MM-dd HH:mm:ss 方式一:代码配置全局日期和时间格式化 /*** author hua*/ Configuration public class WebConfiguration implements WebMvcConfigurer {/*** 项目全局时间格式化*/ Bean public ObjectMapper get…...

GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思想)(二)

书写上回,上回讲到,Elasticsearch的使用前提即:语法,表结构,使用类型结构等。要学这个必须要看前面这个:GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思…...

鸿蒙APP的代码规范

鸿蒙APP的代码规范是为了确保代码质量、可读性和可维护性而定义的一系列规则和标准。以下是一些建议的鸿蒙APP代码规范,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1. 代码风格: 采用…...

蓝桥杯-每日刷题-027

出租汽车计费器 一、题目要求 题目描述 有一个城市出租汽车的计费规则是3公里内&#xff08;含3公里&#xff09;基本费6元&#xff0c;超过3公里&#xff0c;每一公里1.4元。 现在对于输入具体的公里数x&#xff08;0<x<1000&#xff09;&#xff0c;编程计算x公里所需…...

安装Node修改Node镜像地址搭建Vue脚手架创建Vue项目

1、安装VSCode和Node 下载VSCode Visual Studio Code - Code Editing. Redefined 下载Node Node.js (nodejs.org) 检验是否安装成功&#xff0c;WinR,输入cmd命令&#xff0c;使用node -v可以查看到其版本号 2、修改镜像地址 安装好node之后&#xff0c;开始修改镜像地址 …...

git 学习 之一个规范的 commit 如何写

最好的话做一件完整的事情就提交一次...

2023 年人工智能研究与技术排名前 10 的国家

人工智能研究是一项全球性的工作。虽然美国和中国因其对人工智能的贡献而备受关注&#xff0c;但事实是&#xff0c;世界各国都在涉足这项技术&#xff0c;尝试新的突破&#xff0c;并吸引投资者的关注。 斯坦福大学的《2023年人工智能报告》估计&#xff0c;到 2022 年&#…...

留言板(Mybatis连接数据库版)

目录 1.添加Mybatis和SQL的依赖 2.建立数据库和需要的表 3.对应表中的字段&#xff0c;补充Java对象 4.对代码进行逻辑分层 5.后端逻辑代码 之前的项目实例【基于Spring MVC的前后端交互案例及应用分层的实现】https://blog.csdn.net/weixin_67793092/article/details/134…...

第十二章 Sleuth分布式请求链路跟踪

Sleuth分布式请求链路跟踪 gitee:springcloud_study: springcloud&#xff1a;服务集群、注册中心、配置中心&#xff08;热更新&#xff09;、服务网关&#xff08;校验、路由、负载均衡&#xff09;、分布式缓存、分布式搜索、消息队列&#xff08;异步通信&#xff09;、数…...

EasyExcel多线程批量导出数据,动态表头,静态资源访问

1.导入依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency>2.建立实体 Data public class ActResultLogVO implements Serializable {private static…...

树莓派界面改成中文

安装完树莓派系统(Raspberry Pi OS with Desktop)&#xff0c;第一次启动时&#xff0c;时会有如下面二个图所示&#xff0c;让你选择区域时区和语言。 树莓派默认的语言为英文&#xff0c;如果你在安装时没有选择的话&#xff0c;默认的区域为英国&#xff0c;语言为英国英文&…...

软件工程期末复习

● 用例&#xff1a;借书 ●参与者&#xff1a;管理员,借阅者 ●操作流&#xff1a; ① 管理员进入图书借阅界面&#xff0c;用例开始。 ② 系统要求输入借阅者的借书证编码。 ③系统检验借书证编码,如果正确,则显示借阅者的信息。 A1&#xff1a;借书证编码有错。 A2: 如果该借…...

【linux】select实现定时器

/*秒级定时器*/ void seconds_sleep(unsigned long seconds) {if(seconds 0) return;struct timeval tv;tv.tv_secseconds;tv.tv_usec0;int err;do{errselect(0,NULL,NULL,NULL,&tv);}while(err<0 && errnoEINTR); }/*毫秒定时器*/void milliseconds_slee…...

Android 13 - Media框架(28)- MediaCodec(三)

上一节我们了解到 ACodec 执行完 start 流程后&#xff0c;会把所有的 input buffer 都提交给 MediaCodec 层&#xff0c;MediaCodec 是如何处理传上来的 buffer 呢&#xff1f;这一节我们就来了解一下这部分内容。 1、ACodecBufferChannel::fillThisBuffer ACodec 通过调用 A…...

Azure 学习总结

文章目录 1. Azure Function1.1 Azure Function 概念1.2 Azure Function 实现原理1.3 Azure Function 本地调试1.4 Azure Function 云部署 2. Azure API Managment 概念 以及使用2.1 Azure API 概念2.2 Azure API 基本使用 3. Service Bus 应用场景及相关特性3.1 Service Bus 基…...

数据库是否可以直接作为数据仓库的数据源

在数据仓库使用数据时&#xff0c;我们是否可以直接将数据库作为数据源&#xff1f;如果使用了&#xff0c;会存在哪些问题&#xff1f; 数据库中存储的是业务数据&#xff0c;存储方式是行式存储&#xff1b;而数据仓库中数据是以列式存储的&#xff1b;如果数据仓库要想使用…...

IntelliJ IDE 插件开发 | (四)开发一个时间管理大师插件

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听IntelliJ IDE 插件开发 |&#xff08;四&#xff09;开发一…...

【ChatGPT 默认强化学习策略】PPO 近端策略优化算法

PPO 近端策略优化算法 PPO 概率比率裁剪 演员-评论家算法演员-评论家算法&#xff1a;多智能体强化学习核心框架概率比率裁剪&#xff1a;逐步进行变化的方法PPO 目标函数的设计重要性采样KL散度 PPO 概率比率裁剪 演员-评论家算法 论文链接&#xff1a;https://arxiv.org…...

【银行测试】金融银行-理财项目面试/分析总结(二)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 银行理财相关的项…...

张江智荟毁约offer

毕业8年后&#xff0c;找工作被国企歧视学历&#xff01;已经收到了offer&#xff0c;在入职前一周被通知要撤回offer&#xff0c;拒绝录用&#xff0c;理由居然是他们只要本科211以上的人 这是我今天&#xff08;2023-12-26&#xff09;亲身经历的事&#xff0c;听说过面试前…...

ubuntu 系统终端颜色设置

1 开启终端颜色 # 第一步&#xff1a; 在 ~/.bashrc 中设置 force_color_promptyes# 第二步&#xff1a; 执行 source ~/.bashrc2 对于精减的 .bashrc 在 ~/.bashrc 中添加以下内容&#xff0c;再执行 source ~/.bashrc &#xff1a; # uncomment for a colored prompt, if…...

【Vue】class与style绑定

✨ 专栏介绍 在当今Web开发领域中&#xff0c;构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架&#xff0c;正是为了满足这些需求而诞生。它采用了MVVM架构模式&#xff0c;并通过数据驱动和组件化的方式&#xff0c;使…...

大厂前端面试题总结(百度、字节跳动、腾讯、小米.....),附上热乎面试经验!

先简单介绍下自己&#xff0c;我“平平无奇小天才”一枚&#xff0c;毕业于南方普通985普通学生&#xff0c;有幸去百度、字节面试&#xff0c;感觉大公司就是不一样&#xff0c;印象最深的是字节&#xff0c;所以有必要总结一下面试经验&#xff0c;以及面试中遇到的一些问题&…...

EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION 论文阅读

EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION 论文阅读 ABSTRACT1. INTRODUCTION2. RELATEDWORK3. METHOD4. EXPERIMENTAL ANALYSIS AND RESULTS4.1. Comparisons with State-Of-The-Art (SOTA)4.2. Diffusion Model Analysis4.3. Qualitative Result…...

当 ML 遇到 DevOps:如何理解 MLOps

近年来&#xff0c;人工智能 &#xff08;AI&#xff09; 和机器学习 &#xff08;ML&#xff09; 已经席卷全球&#xff0c;几乎成为任何行业的重要组成部分&#xff0c;从零售和娱乐到医疗保健和银行业。这些技术能够通过分析大量数据实现运营自动化、降低成本和促进决策&…...

vue+element+springboot实现多张图片上传

1.需求说明 2.实现思路 3.el-upload组件主要属性说明 4.前端传递MultipartFile数组与服务端接收说明 5.完整代码 1.需求说明 动态模块新增添加动态功能,支持多张图片上传.实现过程中对el-upload组件不是很熟悉,踩了很多坑,当然也参考过别的文章,发现处理很…...

react使用useState更新数组失败

失败案例&#xff1a; const [addBox, setAddBox] useState([])const itemAdd (item) >{addBox.push(item);setAddBox(addBox)console.log(addBox,点击添加按钮)} 原因&#xff1a;react的useState hook监听的是浅监听 在 React 中&#xff0c;使用 useState Hook 来更新…...

《LIO-SAM阅读笔记》3.后端优化

前言&#xff1a; LIO-SAM后端优化部分写在了mapOptimization.cpp文件中&#xff0c;本部分主要进行了激光帧的scan-to-map匹配&#xff0c;回环检测以及关键帧的因子图优化。本部分主要有两个环节同步进行&#xff0c;一个单独开辟了回环检测线程&#xff0c;另外一个是lidar…...