当前位置: 首页 > news >正文

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.指数分布算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用指数分布算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.指数分布算法

指数分布算法原理请参考:https://blog.csdn.net/u011835903/article/details/131025569
指数分布算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

指数分布算法参数如下:

%% 设定指数分布优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明指数分布算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.指数分布算法4.实验参数设定5.算法结果6.…...

vue 监听浏览器关闭或刷新事件

vue 监听浏览器关闭或刷新事件 需求 web项目中使用socket时&#xff0c;涉及到关闭刷新浏览器多次连接问题&#xff0c;其中一个解决方法是在关闭或刷新浏览器时&#xff0c;将连接断开。 代码 <script> export default {// 可以在created、beforeMount或mounted生命…...

VuePress-theme-hope 搭建个人博客 2【快速上手】 —— 安装、部署 防止踩坑篇

续&#x1f446;VuePress、VuePress-theme-hope 搭建个人博客 1【快速上手】 项目常用命令 vuepress dev [dir] 会启动一个开发服务器&#xff0c;以便让你在本地开发你的 VuePress 站点。vuepress build [dir] 会将你的 VuePress 站点构建成静态文件&#xff0c;以便你进行后…...

ClickHouse基础知识(四):ClickHouse 引擎详解

1. 表引擎的使用 表引擎是 ClickHouse 的一大特色。可以说&#xff0c; 表引擎决定了如何存储表的数据。包括&#xff1a; ➢ 数据的存储方式和位置&#xff0c;写到哪里以及从哪里读取数据。 默认存放在/var/lib/clickhouse/data ➢ 支持哪些查询以及如何支持。 ➢ 并发数…...

关于设计模式、Java基础面试题

前言 之前为了准备面试&#xff0c;收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文&#xff1a;https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv 设计模式 单例共有几种写法&#xff1f; 细分起来就有9种&#xff1a;懒汉&#x…...

Python爱心光波完整代码

文章目录 环境需求完整代码详细分析环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.blog.csdn.net/arti…...

PowerShell Instal 一键部署gitea

gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…...

C语言——指针题目“指针探测器“

如果你觉得你指针学的自我感觉良好&#xff0c;甚至已经到达了炉火纯青的地步&#xff0c;不妨来试试这道题目&#xff1f; #include<stdio.h> int main() {char* c[] { "ENTER","NEW","POINT","FIRST" };char** cp[] { c 3…...

Hive讲课笔记:内部表与外部表

文章目录 一、导言二、内部表1.1 什么是内部表1.1.1 内部表的定义1.1.2 内部表的关键特性 1.2 创建与操作内部表1.2.1 创建并查看数据库1.2.2 在park数据库里创建student表1.2.3 在student表插入一条记录1.2.4 通过HDFS WebUI查看数据库与表 三、外部表2.1 什么是外部表2.2 创建…...

Docker本地部署开源浏览器Firefox并远程访问进行测试

文章目录 1. 部署Firefox2. 本地访问Firefox3. Linux安装Cpolar4. 配置Firefox公网地址5. 远程访问Firefox6. 固定Firefox公网地址7. 固定地址访问Firefox Firefox是一款免费开源的网页浏览器&#xff0c;由Mozilla基金会开发和维护。它是第一个成功挑战微软Internet Explorer浏…...

PHP:服务器端脚本语言的瑰宝

PHP&#xff08;Hypertext Preprocessor&#xff09;是一种广泛应用于服务器端编程的开源脚本语言&#xff0c;它以其简单易学、灵活性和强大的功能而成为Web开发的瑰宝。本文将深入介绍PHP的历史、特性、用途以及与生态系统的关系&#xff0c;为读者提供对这门语言全面的了解。…...

【MySQL】数据库并发控制:悲观锁与乐观锁的深入解析

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 数 据 库 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 悲观锁&#xff08;Pessimistic Locking&#xff09;: 乐观锁&#xff08;Optimistic Locking&#xff09;: 总结&#x…...

作业--day38

1.定义一个Person类&#xff0c;包含私有成员&#xff0c;int *age&#xff0c;string &name&#xff0c;一个Stu类&#xff0c;包含私有成员double *score&#xff0c;Person p1&#xff0c;写出Person类和Stu类的特殊成员函数&#xff0c;并写一个Stu的show函数&#xff…...

pytest 的 fixture 固件机制

一、前置说明 固件(fixture)是一些函数,pytest 会在执行测试函数之前(或之后)加载运行它们。pytest 使用 fixture 固件机制来实现测试的前置和后置操作,可以方便地设置和共享测试环境。 二、操作步骤 1. 编写测试代码 atme/demos/demo_pytest_tutorials/test_pytest_…...

分布式技术之分布式计算Stream模式

文章目录 什么是 Stream&#xff1f;Stream 工作原理Storm 的工作原理 实时性任务主要是针对流数据的处理&#xff0c;对处理时延要求很高&#xff0c;通常需要有常驻服务进程&#xff0c;等待数据的随时到来随时处理&#xff0c;以保证低时延。处理流数据任务的计算模式&#…...

2023年12月GESP Python五级编程题真题解析

【五级编程题1】 【试题名称】&#xff1a;小杨的幸运数 【问题描述】 小杨认为&#xff0c;所有大于等于a的完全平方数都是他的超级幸运数。 小杨还认为&#xff0c;所有超级幸运数的倍数都是他的幸运数。自然地&#xff0c;小杨的所有超级幸运数也都是幸运数。 对于一个…...

探索Apache Commons Imaging处理图像

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;咱们今天来聊聊图像处理。在这个数字化日益增长的时代&#xff0c;图像处理已经成为了一个不可或缺的技能。不论是社交媒体上的照片编辑&#xff0c;还是专业领域的图像分析&#xff0c;图像处理无处不在。而作为…...

【11】ES6:async/await

一、概念 async/await 是 ES2017&#xff08;ES8&#xff09;的新特性&#xff0c;它是一种基于 Promise 实现的异步编程方式。async/await 也是一种语法糖。 1、async/await 实现了用同步方式来写异步代码&#xff08;promise是链式调用形式写异步代码&#xff09; 2、asyn…...

深入理解Java集合框架

导语&#xff1a; Java集合框架是Java提供的一组用于管理对象的类和接口&#xff0c;它是Java编程中非常重要的一部分。Java集合框架通过提供诸如List、Set、Map等数据结构&#xff0c;为程序员提供了一种方便、高效的管理对象的方式。本文将深入理解Java集合框架&#xff0c;包…...

极智嘉加快出海发展步伐,可靠产品方案获客户认可

2023年&#xff0c;国内本土企业加快出海征程&#xff0c;不少企业在出海发展中表现出了优越的集团实力与创新的产品优势&#xff0c;有力彰显了我国先进的科技研发实力。作为全球仓储机器人引领者&#xff0c;极智嘉&#xff08;Geek&#xff09;也在不断加快出海发展步伐&…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...