当前位置: 首页 > news >正文

在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法:
        使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法,常用于在进行 CPU 上的操作之前将数据从 GPU 取回

import torch# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.cpu()# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

2、.to('cpu') 方法:
        使用 .to('cpu') 方法也可以将张量移动到 CPU。这是一个通用的设备转移方法,可以指定目标设备和其他参数。

import torch# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.to('cpu')# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

3、.numpy() 方法:
        使用 .numpy() 方法将 GPU 上的张量转换为 NumPy 数组。这个方法实际上是先将张量移动到 CPU,然后转换为 NumPy 数组。

import torch# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')# 将 GPU 上的张量移动到 CPU,并转换为 NumPy 数组
cpu_array = gpu_tensor.cpu().numpy()# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Array:", cpu_array)
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: array([1,2,3])

4、.tolist() 方法:
        使用 .tolist() 方法将张量转换为 Python 列表。

import torch# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')# 将张量转换为 Python 列表
python_list = gpu_tensor.tolist()# 打印输出
print("GPU Tensor:",gpu_tensor)
print("\nPython_list:",python_list)
GPU Tensor: tensor([1,2,3],device='cuda:')
Python_list: [1,2,3]

5、.item() 方法:
        如果张量只包含一个元素,可以使用 .item() 方法直接获取该元素的 Python 数值。

import torch# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor(3, device='cuda')# 获取张量的数值
value = gpu_tensor.item()# 打印输出
print("GPU Tensor:", gpu_tensor)
print("Value:", value)
GPU Tensor: tensor(3,device='cuda:')
Value: 3

相关文章:

在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法: 使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法,常用于在进行 CPU 上的操作之前将数据从 GPU 取回 import torch# 在 GPU 上创建一个张量 gpu_tensor torch.tensor([1, 2, 3], devicecuda)# 将 GPU 上的张…...

【mysql】—— 表的内连和外连

在MySQL中,内连(INNER JOIN)和外连(OUTER JOIN)是用于联接多个表的操作。接下来,我分别给大家介绍下二者。 目录 (一)内连接 1、什么叫内连接 2、语法格式 3、案例:显…...

VSCode远程开发配置

目录 概要远程开发插件安装开始连接SSH无密码登录开发环境配置 概要 现在很多公司都是直接远程到服务器上写代码,使用远程开发,可以在与生产环境相同的环境中开发、测试和部署代码,减少因环境不同而导致的问题。当下VSCode远程开发是支持的比…...

复数值神经网络可能是深度学习的未来

一、说明 复数这种东西,在人的头脑中似乎抽象、似乎复杂,然而,对于计算机来说,一点也不抽象,不复杂,那么,将复数概念推广到神经网络会是什么结果呢?本篇介绍国外的一些同行的尝试实践,请我们注意观察他们的进展。...

【C语言】数据结构——排序二(快排)

💗个人主页💗 ⭐个人专栏——数据结构学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读:数组打印与交换1. 交换排序1.1 基本思想:1.2 冒泡与快排的异同 2. 冒泡排序2.1 基本思想2.2 …...

企业私有云容器化架构

什么是虚拟化: 虚拟化(Virtualization)技术最早出现在 20 世纪 60 年代的 IBM 大型机系统,在70年代的 System 370 系列中逐渐流行起来,这些机器通过一种叫虚拟机监控器(Virtual Machine Monitor,VMM&#x…...

SpringBoot+modbus4j实现ModebusTCP通讯读取数据

场景 Windows上ModbusTCP模拟Master与Slave工具的使用: Windows上ModbusTCP模拟Master与Slave工具的使用-CSDN博客 Modebus TCP Modbus由MODICON公司于1979年开发,是一种工业现场总线协议标准。 1996年施耐德公司推出基于以太网TCP/IP的Modbus协议&…...

Linux性能优化全景指南

Part1 Linux性能优化 1、性能优化性能指标 高并发和响应快对应着性能优化的两个核心指标:吞吐和延时 应用负载角度:直接影响了产品终端的用户体验系统资源角度:资源使用率、饱和度等 性能问题的本质就是系统资源已经到达瓶颈,但…...

树莓派 ubuntu20.04下 python调讯飞的语音API,语音识别和语音合成

目录 1.环境搭建2.去讯飞官网申请密钥3.语音识别(sst)4.语音合成(tts)5.USB声卡可能报错 1.环境搭建 #环境说明:(尽量在ubuntu下使用, 本次代码均在该环境下实现) sudo apt-get install sox # 安装语音播放软件 pip …...

分布式系统架构设计之分布式系统实践案例和未来展望

分布式系统在过去的几十年里经历了长足的发展,从最初的简单分布式架构到今天的微服务、云原生等先进架构,取得了丰硕的成果。本文将通过实际案例分享分布式系统的架构实践,并展望未来可能的发展方向。 一、实践案例 1、微服务化实践 背景 …...

【办公软件】Excel双坐标轴图表

在工作中整理测试数据,往往需要一个图表展示两个差异较大的指标。比如共有三个数据,其中两个是要进行对比的温度值,另一个指标是两个温度的差值,这个差值可能很小。 举个实际的例子:数据如下所示,NTC检测温…...

彻底理解前端安全面试题(1)—— XSS 攻击,3种XSS攻击详解,建议收藏(含源码)

前言 前端关于网络安全看似高深莫测,其实来来回回就那么点东西,我总结一下就是 3 1 4,3个用字母描述的【分别是 XSS、CSRF、CORS】 一个中间人攻击。当然 CORS 同源策略是为了防止攻击的安全策略,其他的都是网络攻击。除了这…...

UE5.1_AI随机漫游

UE5.1_AI随机漫游 目录 UE5.1_AI随机漫游 AI随机漫游方法 方法1:AI角色蓝图直接写方法...

智慧城市新型基础设施建设综合方案:文件全文52页,附下载

关键词:智慧城市建设方案,智慧城市发展的前景和趋势,智慧城市项目方案,智慧城市管理平台,数字化城市,城市数字化转型 一、智慧城市新基建建设背景 1、城市化进程加速:随着城市化进程的加速&am…...

GitHub Copilot 终极详细介绍

编写代码通常是一项乏味且耗时的任务。现代开发人员一直在寻找新的方法来提高编程的生产力、准确性和效率。 像 GitHub Copilot 这样的自动代码生成工具可以使这成为可能。 GitHub Copilot 到底是什么? GitHub Copilot 于 2021 年 10 月推出,是 GitHub 的…...

LeetCode第63题 - 不同路径 II

题目 解答 class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m obstacleGrid.length;int n obstacleGrid[0].length;if (obstacleGrid[0][0] 1) {return 0;}if (obstacleGrid[m - 1][n - 1] 1) {return 0;}int[][] dp new int[m][n];dp…...

python+django网上银行业务综合管理系统vue_bvj8b

本课题主要研究如何用信息化技术改善传统网上银行综合管理行业的经营和管理模式,简化网上银行综合管理的难度,根据管理实际业务需求,调研、分析和编写系统需求文档,设计编写符合银行需要的系统说明书,绘制数据库结构模…...

【软件工程】走进瀑布模型:传统软件开发的经典之路

🍎个人博客:个人主页 🏆个人专栏: 软件工程 ⛳️ 功不唐捐,玉汝于成 目录 前言: 正文 主要阶段: 优点: 缺点: 应用范围: 结语 我的其他博客 前言&am…...

两个字符串间的最短路径问题 (100%用例)C卷 (JavaPythonNode.jsC语言C++)

给定两个字符串,分别为字符串A与字符串B。例如A字符串为ABCABBA,B字符串为CBABAC可以得到下图m*n的二维数组,定义原点为(0,0),终点为(m,n),水平与垂直的每一条边距离为1,映射成坐标系如下图 从原点(0,0)到(0,A)为水平边,距离为1,从(0,A)到(A,C)为垂直边,距离为1;假设两…...

通过ADB来实现脚本来控制手机

ADB 简介 adb的全称为Android Debug Bridge,安卓调试桥,可以通过调试命令来控制手机,诸如开机,关机等按键控制;或者启动,关闭应用;异或进行触摸模拟. 通过学习adb,可以实现简单的脚本控制,最大的特点是不需要root,对于普通手机都可以进行,帮助我们完成一些简单的重复性事件,…...

机器学习之K-means聚类

概念 K-means是一种常用的机器学习算法,用于聚类分析。聚类是一种无监督学习方法,它试图将数据集中的样本划分为具有相似特征的组(簇)。K-means算法的目标是将数据集划分为K个簇,其中每个样本属于与其最近的簇中心。 以下是K-means算法的基本步骤: 选择簇的数量(K值)…...

SSH 端口转发:如何将服务绑定到本地 IP 地址

在日常工作中,我们经常需要访问位于远程服务器上的服务,如数据库、Web 应用程序或其他类型的服务器。直接访问这些服务可能会因为安全限制或网络配置而变得复杂或不可能。这时,SSH 端口转发就成了我们的得力助手。在本篇博客中,我…...

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图) 目录 回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (…...

python实现图像的二维傅里叶变换——冈萨雷斯数字图像处理

原理 二维傅里叶变换是一种在图像处理中常用的数学工具,它将图像从空间域(我们通常看到的像素排列)转换到频率域。这种变换揭示了图像的频率成分,有助于进行各种图像分析和处理,如滤波、图像增强、边缘检测等。 在数学…...

We are a team - 华为OD统一考试

OD统一考试 题解&#xff1a; Java / Python / C 题目描述 总共有 n 个人在机房&#xff0c;每个人有一个标号 (1<标号<n) &#xff0c;他们分成了多个团队&#xff0c;需要你根据收到的 m 条消息判定指定的两个人是否在一个团队中&#xff0c;具体的: 消息构成为 a b …...

NFC物联网智慧校园解决方案

近场通信(Near Field Communication&#xff0c;NFC)又称近距离无线通信&#xff0c;是一种短距离的高频无线通信技术&#xff0c;允许电子设备之间进行非接触式点对点数据传输交换数据。这个技术由免接触式射频识别(RFID)发展而来&#xff0c;并兼容 RFID&#xff0c;主要用于…...

鸿蒙系列--组件介绍之容器组件

一、Badge 描述&#xff1a;给其他组件添加标记 子组件&#xff1a;支持单个子组件 1.创建数字标记 Badge(value: {count: number, position?: BadgePosition, maxCount?: number, style: BadgeStyle}) 2.创建字符串标记 Badge(value: {value: string, position?: Badge…...

perl使用find函数踩坑

前言 写了一个脚本可以同时检查多个仿真log文件&#xff0c;并生成html表格。按照文件修改时间从新到旧排序。但是一直无法使用stat函数获取修改时间。 结论&#xff1a;find函数会改变程序执行的当前目录&#xff0c;find(\&process_files, $dir);函数是在$dir目录下运行…...

Java IDEA JUnit 单元测试

JUnit是一个开源的 Java 单元测试框架&#xff0c;它使得组织和运行测试代码变得非常简单&#xff0c;利用JUnit可以轻松地编写和执行单元测试&#xff0c;并且可以清楚地看到哪些测试成功&#xff0c;哪些失败 JUnit 还提供了生成测试报告的功能&#xff0c;报告不仅包含测试…...

深入理解 c++ 函数模板

函数模板是C中的一种强大特性&#xff0c;它允许程序员编写一个可以处理多种数据类型的函数。通过使用模板&#xff0c;我们可以编写一次函数&#xff0c;然后在多种数据类型上使用它&#xff0c;这大大提高了代码的复用性。 1. 基本概念 函数模板是一种参数化类型的工具&…...

专业商城网站制作/外包网站有哪些

Remove K Digits题目&#xff1a;给出一个非负的整数num, 用字符串表示&#xff0c;去掉k个digits之后得到一个最小的新数字 思路&#xff1a; Zuo-生成窗口最大值数组 - 239. Sliding Window Maximum 给出一个整型数组arr和一个大小为w的窗口&#xff0c;从左向右滑动窗口&…...

厦门专业做网站的公司/通过百度指数不能判断出

原文&#xff1a;Spring实现AOP的4种方式 Spring AOP 详解 Spring实现AOP的4种方式 先了解AOP的相关术语:1.通知(Advice):通知定义了切面是什么以及何时使用。描述了切面要完成的工作和何时需要执行这个工作。2.连接点(Joinpoint):程序能够应用通知的一个“时机”&#xff0c;这…...

做网站怎么租个空间/2023年11月新冠高峰

先看看啥叫深拷贝&#xff1f;啥叫浅拷贝&#xff1f;假设B复制了A&#xff0c;修改A的时候&#xff0c;看B是否发生变化&#xff1a;如果B跟着也变了&#xff0c;说明是浅拷贝&#xff0c;拿人手短&#xff01;(修改堆内存中的同一个值)如果B没有改变&#xff0c;说明是深拷贝…...

网站怎么弄模板/出词

UR-介绍1 资料1.1 简介1.2 资料1.3 网站2 远程用户密码3 通信3.1 The overview of four options is as below3.2 UR CB-Series3.3 UR e-Series4 URScript5 机器人状态读取6 工控机7 控制器芯片8 数据定义参考1 资料 1.1 简介 UR机器人作为目前使用广泛的协作机器人&#xff0…...

做百科权威网站有哪些/大数据精准获客软件

为什么80%的码农都做不了架构师&#xff1f;>>> 对于流式计算系统&#xff0c;我们都预期能够完全正确的处理每一条数据&#xff0c;即所有的数据不多也不少的处理每一条数据&#xff0c;为了达到这样的功能&#xff0c;我们还有很多额外的工作需要处理。 1.首先了…...

家教网站建设模板/搜索关键词的网站

目录 AJAX创建XHR实例指定readyStatechange事件处理程序启动请求发送请求接收数据取消XHR请求/响应AJAX ajax核心技术就是 XMLHttpRequest 对象&#xff0c;简称XHR对象。这种客户端与服务器不刷新页面请求数据技术主要是利用XMLHttpRequest对象实现的&#xff0c;IE7 之前版本…...