当前位置: 首页 > news >正文

OpenCV(Python)基础—9小时入门版

OpenCV(Python)基础—9小时入门版

# =============================================
# Author : Mikigo
# Time   : 2021/12/1
# =============================================

一、一句话简介

OpenCV (Open Source Computer Vision Library) 是用 C++ 语言编写,提供 PythonJava 等语言 API的一个开源计算机视觉库。

二、安装

1、Debian 系使用 apt 安装 OpencCV

sudo apt install python-opencv

UOS 系统上,也可以使用:

sudo apt install python3-opencv

支持 AMDARMMIPS 架构安装。

2、安装 NumPy

NumPy 是 Python中的一个运算速度非常快的数学库,数组玩到起飞,如果你玩数据科学、机器学习,这是必学库。所有 OpenCV 数组结构都转换为 NumPy 数组,要想 OpenCV 学得好,必须熟悉它,学习 OpenCV 基础多少需要了解一点。

sudo apt -y install python3-numpy

好多同学安装 Python 库都习惯使用 pip 安装,实际上 OpenCV 也可以,但是目前只支持在 AMD,所以考虑到兼容性还是建议使用 apt 进行安装,并且官方文档也是建议使用 apt 安装。

三、入门基础

所有 OpenCV 类和函数都放在 cv 名称空间中,在 py 文件中导入:

import cv2 as cv

后续内容默认都使用了导入。

1、图像

1.1、读图像
img = cv.imread()
  • 参数1:文件路径。(str)
  • 参数2:读取图像的方式。
    • cv.IMREAD_COLOR 加载一个彩色图像,忽略 alpha 通道。(默认值)
    • cv.IMREAD_GRAYSCALE 加载图像为灰度模式。
    • cv.IMREAD_UNCHANGED 加载图像,包括 alpha 通道。
    • 还可以简单地分别传递整数1、0或 -1。
1.2、显示图像
cv.show()
  • 参数1:窗口名称。(str)
  • 参数2:图像。(obj)

在窗口中显示图像,窗口自动适合图像大小。

销毁窗口

cv.destroyAllWindows() # 销毁所有窗口
cv.destroyWindow("window_name") # 销毁某个窗口,参数传入窗口名称
1.3、写图像
cv.imwrite()
  • 参数1:文件名。
  • 参数2:图像。(obj)

2、视频

2.1、从摄像头捕获视频
cap = cv.VideoCapture(0)

它的参数可以是设备索引或视频文件的名称。设备索引就是指定哪个摄像头的数字。一般我们连接一个摄像头,所以传0(或-1)。当然可以通过传递1来选择第二个相机,以此类推。

import cv2 as cv
cap = cv.VideoCapture(0)# 判断是否打开
if not cap.isOpened(): exit()
while True:  # 逐帧捕获ret, frame = cap.read()  # 判断是否读取到if not ret:  break# 转灰度gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)# 显示图像cv.imshow('frame', gray)# 监控键盘信号if cv.waitKey(1) == ord('q'):break
# 释放
cap.release()
cv.destroyAllWindows()

一切都看起来很和谐哈。

需要注意其他的两个判断:

  • 有时候摄像头可能没有初始化成功,所以用cap.isOpened() 来判断,并退出。
  • 可能没有接收到帧,停止循环。

获取视频的一些属性:

cap.get(id)

id 是一个从0到18的数字,每个数字表示视频的一个属性。每个属性代表什么→(docs.opencv.org/4.1.2/d4/d1…

cap.set() 属于进阶用法,这里按下不表。

2.2、从文件中播放视频

原理和从摄像头中捕获是一样的,区别在于:

cap = cv.VideoCapture('vtest.avi')

参数是文件名称。

2.3、保存视频
out = VideoWriter()
  • 参数1:文件名
  • 参数2:fourcc = cv.VideoWriter_fourcc(*‘XVID’)
    • FourCC 是一个4字节的代码,用于指定视频编解码器。
    • DIVX, XVID, MJPG, X264, WMV1, WMV2
    • 不同的操作系统有差异 www.fourcc.org/codecs.php
  • 参数3:帧率
  • 参数3:分辨率
import cv2 as cv
cap = cv.VideoCapture(0)
fourcc = cv.VideoWriter_fourcc(*'XVID')
out = cv.VideoWriter('output.avi', fourcc, 20.0, (640,  480))
while cap.isOpened():ret, frame = cap.read()if not ret:break# 旋转后写入frame = cv.flip(frame, 0)out.write(frame)cv.imshow('frame', frame)if cv.waitKey(1) == ord('q'):break
# 释放
cap.release()
out.release()
cv.destroyAllWindows()

结合前面摄像头捕获视频的代码,看起来很简单~

3、绘图

3.1、画线
cv.line()

举例:创建一个黑色图像,并从左上角到右下角在上面画一条蓝线

import numpy as np
import cv2 as cv
# 写一个黑色的图像
img = np.zeros((512,512,3), np.uint8)
# 画一根5像素款的蓝线
cv.line(img,(0,0),(511,511),(255,0,0),5)

(255,0,0) 代表蓝色,最后一个参数是线的宽度。

3.2、画圆
cv.circle(img,(447,63), 63, (0,0,255), -1)

参数:中心坐标和半径

3.3、画矩形
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)

参数:矩形的左上角和右下角

支持其他图形。。。

四、核心功能

1、图像的基本操作

1.1、访问和修改像素值
import numpy as np  # 官方建议固定写法
import cv2 as cv
img = cv.imread('messi5.jpg')
px = img[100,100]  
# (100, 100)的像素值[157 166 200](B、G和R值)
blue = img[100,100,0] 

修改

img[100,100] = [255,255,255]

直接赋值即可修改,但是直接访问非常缓慢,更好的像素访问和编辑方法:

img.item(10,10,2)  # 访问R值
img.itemset((10,10,2),100)  # 修改R值
1.2、访问图像属性

图像属性包括行数、列数和通道数、图像数据类型、像素数等。

img.shape
# (342,548,3)

返回一个行、列和通道数的元组。

img.size  # 访问像素总数
1.3、特定区域

机器学习中经常需要抠图,比如人脸识别时,一般会先选择人脸区域,搜索其中的眼睛,而不是搜索整个图像,以提供精确度。

ball = img[280:340, 330:390] # 抠一个区域
img[273:333, 100:160] = ball # 复制到另一个区域
1.4、图像信道的分裂与合并
b,g,r = cv.split(img)  # 分裂
img = cv.merge((b,g,r))  # 合并

或者

b = img[:,:,0]

比如将所有红色像素设置为零

img[:,:,2] = 0

2、图像的算术运算

2.1、图片添加
cv.add()

可以添加两个图像

x = np.uint8([250])
y = np.uint8([10])
cv.add(x + y)  # 250+10 = 260 => 255

OpenCV 的加法和 Numpy 的加法是有区别的。OpenCV 加法是一个饱和操作,而 Numpy 加法是一个除余操作。

x + y  # 250+10 = 260 % 256 = 4
2.2、图像混合
cv.addWeighted()

也是图像添加,但不同的权重给予图像,使它给人一种混合或透明的感觉。

  • 参数1、2:图像1及其权重。
  • 参数3、4:图像2及其权重。
  • 参数5:图像混合的α 值,通过改变 α 从0→1,你可以在一张图片到另一张图片之间进行一个很魔幻的转换。
img1 = cv.imread('ml.png')
img2 = cv.imread('opencv-logo.png')
# 第一幅图像的权重为0.7,第二幅图像的权重为0.3
dst = cv.addWeighted(img1,0.7,img2,0.3,0)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()
2.3、按位操作

按位 AND、 OR、 NOT 和 XOR 操作。

可以理解为图像的逻辑运算:

img1 = cv.imread('messi5.jpg')
img2 = cv.imread('opencv-logo-white.png')
# 把标志放在左上角,所以创建了一个roi
rows,cols,channels = img2.shape
roi = img1[0:rows, 0:cols ]
# 创建一个标志图案,以及它的反面
img2gray = cv.cvtColor(img2,cv.COLOR_BGR2GRAY) # 灰度处理
ret, mask = cv.threshold(img2gray, 10, 255, cv.THRESH_BINARY)
mask_inv = cv.bitwise_not(mask)
# 黑掉 ROI 中的 logo 区域
img1_bg = cv.bitwise_and(roi,roi,mask = mask_inv)
# 只取标志图像中的标志区域
img2_fg = cv.bitwise_and(img2,img2,mask = mask)
# 将 logo 放入 ROI 中,并修改主图像
dst = cv.add(img1_bg,img2_fg)
img1[0:rows, 0:cols ] = dst
cv.imshow('res',img1)
cv.waitKey(0)
cv.destroyAllWindows()

五、图像处理

1、改变色彩空间

OpenCV 目前有150多种颜色空间转换方法。但其中两个最广泛使用的:

1.1、Gray

cv.COLOR_BGR2GRAY

顾名思义:BGR → Gray

这个图像识别中经常使用,可以提供识别速度和准确度。

1.2、HSV

cv.COLOR_BGR2HSV

顾名思义:BGR → HSV

HSV 图像可以用它来提取有色物体在 HSV 中,比在 BGR 颜色空间中更容易表示颜色。

import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
while True:# 取出视频的每一帧_, frame = cap.read()# 从 BGR 到 HSV 颜色空间的转换hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)# 定义 HSV 中蓝色的范围lower_blue = np.array([110,50,50])upper_blue = np.array([130,255,255])# 得到蓝色mask = cv.inRange(hsv, lower_blue, upper_blue)# 按位-and 蒙版和原始图像res = cv.bitwise_and(frame,frame, mask= mask)cv.imshow('frame',frame)cv.imshow('mask',mask)cv.imshow('res',res)k = cv.waitKey(5) & 0xFFif k == 27:break
cv.destroyAllWindows()

2、几何变换

2.1、缩放
res = cv.resize(InputArray, OutputArray, Size, fx, fy, interpolation)
参数解释
nputArray src输入图片
OutputArray dst输出图片
Size输出图片尺寸
fx, fy沿x轴,y轴的缩放系数
interpolation插入方式

interpolation 默认情况下,使用的插值方法是 cv.INTER_LINEAR,用于所有调整大小。

举例:

import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)
2.2、旋转
cv.getRotationMatrix2D()

旋转90度:

img = cv.imread('messi5.jpg',0)
rows,cols = img.shape
# cols-1 and rows-1 are the coordinate limits.
M = cv.getRotationMatrix2D(((cols-1)/2.0,(rows-1)/2.0),90,1)
dst = cv.warpAffine(img,M,(cols,rows))

3、图像阈值化

3.1、自适应阈值分割

如果像素值小于阈值,则将其设置为0,否则将其设置为最大值。

ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
  • cv.THRESH_BINARY
  • cv.THRESH_BINARY_INV
  • cv.THRESH_TRUNC
  • cv.THRESH_TOZERO
  • cv.THRESH_TOZERO_INV

如果一个图像在不同的区域有不同的照明条件,全局使用一个阈值一般是不可用的,对同一幅图像的不同区域采用不同的阈值,对不同光照条件下的图像取得了较好的效果。

  • cv.ADAPTIVE_THRESH_MEAN_C 阈值是邻近区域的平均值减去常数 c
  • cv.ADAPTIVE_THRESH_GAUSSIAN_C 阈值是邻域值减去常数 c 的高斯加权和
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('sudoku.png',0)
img = cv.medianBlur(img,5)
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,cv.THRESH_BINARY,11,2)
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)','Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in xrange(4):plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')plt.title(titles[i])plt.xticks([]),plt.yticks([])
plt.show()

4、模板匹配

4.1、单目标匹配

模板匹配是一种在较大图像中搜索和查找模板图像位置的方法。

cv.matchTemplate()
  • 参数1:大图
  • 参数2:小图
  • 参数3:匹配方法
    • cv.TM_CCOEFF
    • cv.TM_CCOEFF_NORMED
    • cv.TM_CCORR
    • cv.TM_CCORR_NORMED
    • cv.TM_SQDIFF
    • cv.TM_SQDIFF_NORMED

查找最大/最小值

 cv.minMaxLoc()
res = cv.matchTemplate(source, template, cv.TM_CCOEFF_NORMED)
cv.minMaxLoc(res)
4.2、多目标匹配

cv.minMaxLoc()不会给出所有位置。

通过阈值处理多个模板匹配。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
loc = np.where( res >= 0.8)
for pt in zip(*loc[::-1]):cv.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
cv.imwrite('res.png',img_rgb)

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
Python全套学习资料

在这里插入图片描述

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓
在这里插入图片描述

相关文章:

OpenCV(Python)基础—9小时入门版

OpenCV(Python)基础—9小时入门版 # # Author : Mikigo # Time : 2021/12/1 # 一、一句话简介 OpenCV (Open Source Computer Vision Library) 是用 C 语言编写,提供 Python、Java 等语言 API的一个开源计算机视觉库。 二、安装 1、Debian 系使用 apt 安装 O…...

SpringBoot整合Canal

一 linux docker compose版本 1.第一步:基础环境 (1)第1步:安装jak、maven、git、nodejs、npm yum install maven mvn -v 安装maven时会帮安装jdkyum install git git --version 2.27.0yum in…...

用 Python 提取某一个公众号下的所有文章

当我们想要提取某一个公众号下的所有文章时,我们可以借助微信公众平台的开放接口,通过Python编写一个爬虫程序来实现。下面是一个示例代码,以及如何将其转化为一篇详细的微信公众号推文文章。 1. 导入所需库 首先,我们需要导入所…...

鸿蒙4.0实战教学—基础ArkTS(简易视频播放器)

构建主界面 主界面由视频轮播模块和多个视频列表模块组成,效果图如图: VideoData.ets中定义的视频轮播图数组SWIPER_VIDEOS和视频列表图片数组HORIZONTAL_VIDEOS。 // VideoData.ets import { HorizontalVideoItem } from ./HorizontalVideoItem; impo…...

4. 深入 Python 流程控制

​​​​​​ 4. 深入 Python 流程控制 除了前面介绍的 while 语句,Python 还从其它语言借鉴了一些流程控制功能,并有所改变。 4.1. if 语句 也许最有名的是 if 语句。例如: >>> x int(raw_input("Please enter an integer: "))…...

2000-2022年上市公司股票流动性指标数据/股票流动性Amihud(原始数据+计算代码+计算结果)

2000-2022年上市公司股票流动性指标数据/股票流动性Amihud(原始数据计算代码计算结果) 1、时间:2000-2022年 3、指标:证券代码_没有单位、交易日期_没有单位、日个股交易金额_元、考虑现金红利再投资的日个股回报率_没有单位、交…...

Unity 数据存储PlayerPrefs管理类

Unity 数据存储PlayerPrefs管理类 Unity 数据存储PlayerPrefs管理类实现存取实体类对象存储格式为Json格式Singleton.csInventoryEntity.csDataManager.cs用法如下 Unity 数据存储PlayerPrefs管理类 实现存取实体类对象 存储格式为Json格式 源码如下: Singleton…...

一篇文章学会如何使用 NestJS 过滤器处理系统全局异常情况

前言 在实际的应用开发中,你或许遇到过异常处理机制不统一或错误信息展示混乱的现象。为了解决这些问题,NestJS提供了一个优雅的解决方案:过滤器(Filter)。本文将从实际出发,向你介绍NestJS过滤器的基本概…...

ubuntu 守护进程 supervisor

# 安装 apt-get install supervisor# 检查 echo_supervisord_conf# 查看配置文件所在位置 # [include] # files /etc/supervisor/conf.d/*.conf ps -ef | grep supervisorcd /etc/supervisor/conf.d/lscat frp.conf[program:frp] command /data/work/frp/frpc -c /data/work/…...

SparkStreaming_window_sparksql_reids

1.5 window 滚动窗口滑动窗口 window操作就是窗口函数。Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会…...

爬虫工作量由小到大的思维转变---<第二十四章 Scrapy的`统计数据`收集stats collection ---12月26日补>

前言: 前两篇是讲的数据诊断分析,还有一篇深挖解决内存泄漏的文章,目前我还没整理汇编出来;但是,想到分析问题的时候,忽然觉得爬虫的数据统计好像也挺重要;于是,心血来潮准备来插一篇这个------让大家对日常scrapy爬的数据,做到心里有数!不必自己去搅破脑汁捣腾日志,敲计算器了…...

Kafka:本地设置

这是设置 Kafka 将数据从 Elasticsearch 发布到 Kafka 主题的三部分系列的第一部分;该主题将被 Neo4j 使用。第一部分帮助您在本地设置 Kafka。第二部分将讨论如何设置Elasticsearch将数据发布到Kafka主题。最后 将详细介绍如何使用连接器订阅主题并使用数据。 Kafka Kafka 是…...

.NetCore NPOI 读取excel内容及单元格内图片

由于数据方提供的数据在excel文件中不止有文字内容还包含图片信息,于是编写相关测试代码,读取excel文件内容及图片信息. 本文使用的是 NPOI-2.6.2 版本,此版本持.Net4.7.2;.NetStandard2.0;.NetStandard2.1;.Net6.0。 测试文档内容&#xf…...

TCP/UDP协议

1. 请解释TCP和UDP的主要区别。 TCP和UDP都是位于传输层的协议,具有不同的特点和应用场景。以下是它们的主要区别: 连接方式:TCP是面向连接的协议,这意味着在数据传输之前需要先建立连接。这通常通过三次握手来建立连接&#xff…...

3D 渲染如何帮助电商促进销售?

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 3D 渲染图像因其高转化率而成为亚马逊卖家的最新趋势。它是电子商务平…...

使用栈求表达式的值【数据结构】

中缀表达式转后缀表达式 转换流程: 初始化一个运算符栈。自左向右扫描中缀表达式,当扫描到操作数时直接连接到后缀表达式上。当扫描到操作符时,和运算符栈栈顶的操作符进行比较。如果比栈顶运算符高,则入栈。如果比栈顶运算符低…...

{MySQL}索引事务和JDBC

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、索引1.1索引是什么1.2作用1.3代码 二、事务2.1什么是事务2.2使用 三.JDBC总结 前言 接着上次,继续讲下MySQL 提示:以下是本篇文章正…...

Qt designer界面和所有组件功能的详细介绍(全!!!)

PyQt5和Qt designer的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm1001.2014.3001.5501 目录 1. 界面介绍2. Widget Box 常用组件2.1 Layouts(布局)2.2 Spacers(间隔器)2.3 Item V…...

mysql_存储过程

举例子 createdefiner root% procedure insert_batch_test(IN START int(10), IN max_num int(10)) BEGINDECLAREi INT DEFAULT 0;SET autocommit 0;REPEATSET i i 1;INSERT INTO test (std, score)VALUES (CEILING(RAND() * 10 100), CEILING(RAND() * 50 50));UNTIL i …...

uboot学习及内核更换_incomplete

官方文档 在前面 文章目录 uboot常见命令学习环境变量网络控制台uboot标准启动其他 升级uboot或内核bin和uimg以及booti和bootm的区别制作uImage更换内核更换uboot后续计划 uboot常见命令学习 环境变量 Environment Variables环境变量 autostart 如果值为yes,则会…...

KVM 自动化脚本的使用及热/冷迁移

一、介绍 目录结构介绍 [rootkvm-server kvm]# tree -L 2 . ├── control # 控制脚本目录 │ ├── KVMInstall.sh # kvm服务安装脚本 │ ├── VMHost.sh # kvm虚拟机克隆脚本 │ └── VMTemplate.sh # kvm模板机安装脚本 ├── mount # 此目录保持为空&…...

Unity中Shader裁剪空间推导(在Shader中使用)

文章目录 前言一、在Shader中使用转化矩阵1、在顶点着色器中定义转化矩阵2、用 UNITY_NEAR_CLIP_VALUE 区分平台矩阵3、定义一个枚举用于区分当前是处于什么相机 二、我们在DirectX平台下,看看效果1、正交相机下2、透视相机下3、最终代码 前言 在上一篇文章中&…...

ES的使用(Elasticsearch)

ES的使用(Elasticsearch) es是什么? es是非关系型数据库,是分布式文档数据库,本质上是一个JSON 文本 为什么要用es? 搜索速度快,近乎是实时的存储、检索数据 怎么使用es? 1.下载es的包(环境要…...

车牌识别技术,如何用python识别车牌号

目录 一.前言 二.运行环境 三.代码 四.识别效果 五.参考 一.前言 车牌识别技术(License Plate Recognition, LPR)在交通计算机视觉(Computer Vision, CV)领域具有非常重要的研究意义。以下是该技术的一些扩展说明&#xff1…...

爬虫工作量由小到大的思维转变---<第二十五章 Scrapy开始很快,越来越慢(追溯篇)>

爬虫工作量由小到大的思维转变---<第二十二章 Scrapy开始很快,越来越慢(诊断篇)>-CSDN博客 爬虫工作量由小到大的思维转变---<第二十三章 Scrapy开始很快,越来越慢(医病篇)>-CSDN博客 前言: 之前提到过,很多scrapy写出来之后,不…...

Servlet入门

目录 1.Servlet介绍 1.1什么是Servlet 1.2Servlet的使用方法 1.3Servlet接口的继承结构 2.Servlet快速入门 2.1创建javaweb项目 2.1.1创建maven工程 2.1.2添加webapp目录 2.2添加依赖 2.3创建servlet实例 2.4配置servlet 2.5设置打包方式 2.6部署web项目 3.servl…...

【C#与Redis】--高级主题--Redis 哨兵

一、简介 1.1 哨兵的概述 哨兵(Sentinel)是 Redis 分布式系统中用于监控和管理多个 Redis 服务器的组件。它的主要目标是确保 Redis 系统的高可用性,通过实时监测主节点和从节点的状态,及时发现并自动处理故障,保证系…...

linux安装python

文章目录 前言一、下载安装包二、安装1.安装依赖2.解压3.安装4.软链接5.验证 总结 前言 本篇文章介绍linux环境下安装python。 一、下载安装包 下载地址:官方网站 我们以最新的标准版为例 二、安装 1.安装依赖 yum -y install openssl-devel ncurses-devel li…...

【如何破坏单例模式(详解)】

✅如何破坏单例模式 💡典型解析✅拓展知识仓✅反射破坏单例✅反序列化破坏单例✅ObjectlnputStream ✅总结✅如何避免单例被破坏✅ 避免反射破坏单例✅ 避免反序列化破坏单例 💡典型解析 单例模式主要是通过把一个类的构造方法私有化,来避免重…...

什么是 SPI,它有什么用?

文章目录 什么是 SPI,它有什么用? 什么是 SPI,它有什么用? SPI 全称是 Service Provider Interface ,它是 JDK 内置的一种动态扩展点的实现。 简单来说,就是我们可以定义一个标准的接口,然后第三…...

中国500强企业排行榜/青岛网站seo公司

前些日子,板叔卡了山口山的审批,一大堆宅男宅女没事干,创作出了大批优秀的山口山翻唱、视频、小说、动画片,自从新版本开了后,这些创作全停下来了,没啥可看的了,《我叫MT》和《联盟的勇士》几个…...

网站代运营公司/搜索引擎优化seo优惠

F3是Form follows function的简称。Sun即将对这个项目开放源代码F3 是一个声明式的Java脚本语言,它使用静态类型以获得更好的IDE支持和编译时错误(这和Javascript不同),还支持类型引用,申明式语法和自动数据绑定&#…...

做舞台灯光的在哪些网站接订单呢/seozou是什么意思

新手最近在刷LeetCode上的题,python实现的方法,算法不一定是最优的 有什么意见或建议欢迎来提判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 示例 1: 输入: 121 …...

网站关键词优化的步骤和过程/百度seo权重

在这个求职旺季,眼看周围的人都跳槽了,你是不是也蠢蠢欲动了? 近期,前程无忧论坛就“跳槽季的你,处于哪种状态?”发起调查,投票结果显示:50%的受访者处于“已经裸辞,在找…...

solusvm做网站/中国建设网官方网站

动态SQL数据层框架(0):一个基于FreeMarker和DBUtils的动态SQL框架动态SQL数据层框架(1):DBUtils框架基础动态SQL数据层框架(2):框架结构动态SQL数据层框架(3&…...

陕西省住房建设厅网站/免费seo快速排名工具

npm run build打包后 cd dist http-server 没有http-server,npm install -g http-server http-server...