当前位置: 首页 > news >正文

数据挖掘 聚类度量

格式化之前的代码:

import numpy as np#计算
import pandas as pd#处理结构化表格
import matplotlib.pyplot as plt#绘制图表和可视化数据的函数,通常与numpy和pandas一起使用。
from sklearn import metrics#聚类算法的评估指标。
from sklearn.cluster import KMeans#K均值聚类算法
from hopkins_test import hopkins_statistic
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号data = pd.read_csv('city.txt')#读数据########################检测是否有类结构###################### h_value = hopkins_statistic(data.values)  评估数据集的聚类倾向性,越接近于 0.5 表示数据集具有良好的聚类倾向性,越接近于 1 表示数据集的聚类倾向性较差。########################判定是否有最优簇数目#####################SSE = []
for i in range(1, 11):  # k取1-10,计算簇内误差平方和model = KMeans(n_clusters=i)#创建一个 KMeans 对象 model,使用当前的簇数量 i 初始化该对象model.fit(data)#对数据集 data 进行拟合和聚类。SSE.append(model.inertia_)#获取当前模型的簇内误差平方和,并将其添加到 SSE 列表中。
plt.plot(range(1, 11), SSE, marker='.')#plt.plot() 函数绘制折线图,横坐标为簇数量(1-10),纵坐标为簇内误差平方和(SSE)。
plt.xticks(ticks= range(1, 11))#设置横坐标刻度为 1-10
plt.xlabel('k值',)
plt.ylabel('簇内误差平方和SSE')
plt.show()########################确定最优簇数目#####################
opt = 0
for k in [5,6]:#遍历簇数量列表 [5, 6]kmeans_model = KMeans(n_clusters=k, random_state=1).fit(data)#创建一个 KMeans 对象 kmeans_model,使用当前的簇数量 k 和随机种子 random_state=1 初始化该对象,对数据集 data 进行拟合和聚类labels = kmeans_model.labels_#获取每个样本所属的簇标签value = metrics.silhouette_score(data, labels, metric='euclidean')#计算当前聚类结果的轮廓系数,其中指定使用欧氏距离作为度量方式。print(value)#打印输出当前轮廓系数的值if value >= opt:#如果当前轮廓系数大于等于 opt 变量的值,则更新 opt、opt_k 和 opt_labels 分别为当前轮廓系数、簇数量 k 和对应的簇标签。opt = value#opt 存储了最佳轮廓系数的值,opt_k 存储了具有最佳轮廓系数的簇数量,opt_labels 存储了对应的簇标签。opt_k = kopt_labels = labels########################聚类结果显示#####################colors = ['r', 'c', 'b', 'y', 'g']#创建一个颜色列表 colors,用于指定每个簇的颜色。
plt.figure()#创建一个新的图形窗口
for j in range(5):#遍历簇标签的取值范围(0-4)index_set = np.where(opt_labels == j)#获取属于当前簇标签的样本的索引集合。cluster = data.iloc[index_set]#使用这些索引从数据集 data 中提取属于当前簇的样本,并赋值给变量 clusterplt.scatter(cluster.iloc[:, 0], cluster.iloc[:, 1], c=colors[j], marker='.')#绘制当前簇的样本点,横坐标为 cluster 的第一列,纵坐标为 cluster 的第二列,颜色为 colors[j],标记为小圆点 '.'。plt.show()

格式化之后的代码:

import numpy as np  # 计算
import pandas as pd  # 处理结构化表格
import matplotlib.pyplot as plt  # 绘制图表和可视化数据的函数,通常与numpy和pandas一起使用。
from sklearn import metrics  # 聚类算法的评估指标。
from sklearn.cluster import KMeans  # K均值聚类算法
from hopkins_test import hopkins_statisticplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号data = pd.read_csv('city.txt')  # 读数据########################检测是否有类结构###################### h_value = hopkins_statistic(data.values)  评估数据集的聚类倾向性,越接近于 0.5 表示数据集具有良好的聚类倾向性,越接近于 1 表示数据集的聚类倾向性较差。########################判定是否有最优簇数目#####################SSE = []
for i in range(1, 11):  # k取1-10,计算簇内误差平方和model = KMeans(n_clusters=i)  # 创建一个 KMeans 对象 model,使用当前的簇数量 i 初始化该对象model.fit(data)  # 对数据集 data 进行拟合和聚类。SSE.append(model.inertia_)  # 获取当前模型的簇内误差平方和,并将其添加到 SSE 列表中。
plt.plot(range(1, 11), SSE, marker='.')  # plt.plot() 函数绘制折线图,横坐标为簇数量(1-10),纵坐标为簇内误差平方和(SSE)。
plt.xticks(ticks=range(1, 11))  # 设置横坐标刻度为 1-10
plt.xlabel('k值', )
plt.ylabel('簇内误差平方和SSE')
plt.show()########################确定最优簇数目#####################
opt = 0
for k in [5, 6]:  # 遍历簇数量列表 [5, 6]kmeans_model = KMeans(n_clusters=k, random_state=1).fit(data)  # 创建一个 KMeans 对象 kmeans_model,使用当前的簇数量 k 和随机种子 random_state=1 初始化该对象,对数据集 data 进行拟合和聚类labels = kmeans_model.labels_  # 获取每个样本所属的簇标签value = metrics.silhouette_score(data, labels, metric='euclidean')  # 计算当前聚类结果的轮廓系数,其中指定使用欧氏距离作为度量方式。print(value)  # 打印输出当前轮廓系数的值if value >= opt:  # 如果当前轮廓系数大于等于 opt 变量的值,则更新 opt、opt_k 和 opt_labels 分别为当前轮廓系数、簇数量 k 和对应的簇标签。opt = value  # opt 存储了最佳轮廓系数的值,opt_k 存储了具有最佳轮廓系数的簇数量,opt_labels 存储了对应的簇标签。opt_k = kopt_labels = labels########################聚类结果显示#####################colors = ['r', 'c', 'b', 'y', 'g']  # 创建一个颜色列表 colors,用于指定每个簇的颜色。
plt.figure()  # 创建一个新的图形窗口
for j in range(5):  # 遍历簇标签的取值范围(0-4)index_set = np.where(opt_labels == j)  # 获取属于当前簇标签的样本的索引集合。cluster = data.iloc[index_set]  # 使用这些索引从数据集 data 中提取属于当前簇的样本,并赋值给变量 clusterplt.scatter(cluster.iloc[:, 0], cluster.iloc[:, 1], c=colors[j],marker='.')  # 绘制当前簇的样本点,横坐标为 cluster 的第一列,纵坐标为 cluster 的第二列,颜色为 colors[j],标记为小圆点 '.'。plt.show()

霍普金斯统计代码
格式化之前:

import numpy as np#计算
from sklearn.neighbors import NearestNeighbors#最近邻搜索的算法实现,可用于在数据集中查找最接近给定样本的邻居。
from sklearn.datasets import load_iris#load_iris函数是一个用于加载鸢尾花数据集的辅助函数
import pandas as pd#数据分析
from random import sample#随机抽样和洗牌操作
from numpy.random import uniform#均匀分布的随机数
def hopkins_statistic(X):#输入参数X是一个二维数组,表示原始数据集sample_size = int(X.shape[0]*0.05) #0.05 (5%) based on paper by Lawson and Jures  #计算样本大小,占原始数据集大小的5%。这个样本将用于生成均匀随机样本。#原始数据空间的均匀随机样本X_uniform_random_sample = uniform(X.min(axis=0), X.max(axis=0) ,(sample_size , X.shape[1]))#X.min(axis=0)和X.max(axis=0)会计算原始数据集X每一列的最小值和最大值。这将返回一个包含每列最小值的一维数组和一个包含每列最大值的一维数组uniform函数将使用这些最小值和最大值来指定随机样本的取值范围。指定了生成的随机样本的形状,即一个元组(sample_size, X.shape[1]),其中sample_size表示样本大小,X.shape[1]表示每个样本的特征数。#从原始数据中随机抽取一个样本random_indices=sample(range(0, X.shape[0], 1), sample_size)#从原始数据集X中随机选择一个子集。具体而言,range(0, X.shape[0], 1)将返回一个从0到X.shape[0]的整数序列,步长为1。sample函数将从该序列中随机选择sample_size个不重复的整数,这些整数将用于从X中抽取对应的样本。X_sample = X[random_indices]#根据随机选择的索引从原始数据集中抽取一部分样本#初始化无监督学习器以实现NN搜索neigh = NearestNeighbors(n_neighbors=2)#NearestNeighbors是一个用于寻找最近邻的非监督学习算法。在这里,n_neighbors=2参数指定了要查找的最近邻的数量,即每个样本要找到的最近的两个邻居。nbrs=neigh.fit(X)#u_distances = 均匀随机样本的最近邻距离u_distances , u_indices = nbrs.kneighbors(X_uniform_random_sample , n_neighbors=2)#计算均匀随机样本X_uniform_random_sample在原始数据集X中的最近邻距离,并返回距离和对应的索引。这里将返回每个均匀随机样本的两个最近邻距离,其中第一个最近邻是样本本身,距离为0,因此只保留第二个最近邻的距离。u_distances = u_distances[: , 0] #到第一个最近邻居的距离#仅保留到第一个最近邻的距离#w_distances = 来自原始数据X的点样本的最近邻距离w_distances , w_indices = nbrs.kneighbors(X_sample , n_neighbors=2)#计算从原始数据集中抽取的样本X_sample的最近邻距离,并返回距离和对应的索引。同样,只保留第二个最近邻的距离。#到第二个最近邻居的距离(因为第一个邻居将是点本身,距离= 0)w_distances = w_distances[: , 1]#仅保留到第二个最近邻的距离u_sum = np.sum(u_distances)#计算均匀随机样本的最近邻距离之和w_sum = np.sum(w_distances)#计算来自原始数据集的样本的最近邻距离之和#计算并返回霍普金斯统计数据H = u_sum/ (u_sum + w_sum)#计算霍普金斯统计数据return H#返回计算得到的霍普金斯统计量
if __name__=="__main__":#if __name__=="__main__":是一个条件语句,它判断当前脚本是否作为主程序直接运行。只有当脚本作为主程序运行时,才会执行if语句块中的代码。iris=load_iris().data#iris = load_iris().data加载了一个名为iris的数据集,数据集是鸢尾花数据集。.data属性返回数据集的特征部分。h_value=hopkins_statistic(iris)#h_value = hopkins_statistic(iris)调用了名为hopkins_statistic的函数,计算了数据集的Hopkins统计量,并将结果赋值给变量h_value。

格式化之后的代码:

import numpy as np  # 计算
from sklearn.neighbors import NearestNeighbors  # 最近邻搜索的算法实现,可用于在数据集中查找最接近给定样本的邻居。
from sklearn.datasets import load_iris  # load_iris函数是一个用于加载鸢尾花数据集的辅助函数
import pandas as pd  # 数据分析
from random import sample  # 随机抽样和洗牌操作
from numpy.random import uniform  # 均匀分布的随机数def hopkins_statistic(X):  # 输入参数X是一个二维数组,表示原始数据集sample_size = int(X.shape[0] * 0.05)  # 0.05 (5%) based on paper by Lawson and Jures  #计算样本大小,占原始数据集大小的5%。这个样本将用于生成均匀随机样本。# 原始数据空间的均匀随机样本X_uniform_random_sample = uniform(X.min(axis=0), X.max(axis=0), (sample_size, X.shape[1]))  # X.min(axis=0)和X.max(axis=0)会计算原始数据集X每一列的最小值和最大值。这将返回一个包含每列最小值的一维数组和一个包含每列最大值的一维数组uniform函数将使用这些最小值和最大值来指定随机样本的取值范围。指定了生成的随机样本的形状,即一个元组(sample_size, X.shape[1]),其中sample_size表示样本大小,X.shape[1]表示每个样本的特征数。# 从原始数据中随机抽取一个样本random_indices = sample(range(0, X.shape[0], 1),sample_size)  # 从原始数据集X中随机选择一个子集。具体而言,range(0, X.shape[0], 1)将返回一个从0到X.shape[0]的整数序列,步长为1。sample函数将从该序列中随机选择sample_size个不重复的整数,这些整数将用于从X中抽取对应的样本。X_sample = X[random_indices]  # 根据随机选择的索引从原始数据集中抽取一部分样本# 初始化无监督学习器以实现NN搜索neigh = NearestNeighbors(n_neighbors=2)  # NearestNeighbors是一个用于寻找最近邻的非监督学习算法。在这里,n_neighbors=2参数指定了要查找的最近邻的数量,即每个样本要找到的最近的两个邻居。nbrs = neigh.fit(X)# u_distances = 均匀随机样本的最近邻距离u_distances, u_indices = nbrs.kneighbors(X_uniform_random_sample,n_neighbors=2)  # 计算均匀随机样本X_uniform_random_sample在原始数据集X中的最近邻距离,并返回距离和对应的索引。这里将返回每个均匀随机样本的两个最近邻距离,其中第一个最近邻是样本本身,距离为0,因此只保留第二个最近邻的距离。u_distances = u_distances[:, 0]  # 到第一个最近邻居的距离#仅保留到第一个最近邻的距离# w_distances = 来自原始数据X的点样本的最近邻距离w_distances, w_indices = nbrs.kneighbors(X_sample,n_neighbors=2)  # 计算从原始数据集中抽取的样本X_sample的最近邻距离,并返回距离和对应的索引。同样,只保留第二个最近邻的距离。# 到第二个最近邻居的距离(因为第一个邻居将是点本身,距离= 0)w_distances = w_distances[:, 1]  # 仅保留到第二个最近邻的距离u_sum = np.sum(u_distances)  # 计算均匀随机样本的最近邻距离之和w_sum = np.sum(w_distances)  # 计算来自原始数据集的样本的最近邻距离之和# 计算并返回霍普金斯统计数据H = u_sum / (u_sum + w_sum)  # 计算霍普金斯统计数据return H  # 返回计算得到的霍普金斯统计量if __name__ == "__main__":  # if __name__=="__main__":是一个条件语句,它判断当前脚本是否作为主程序直接运行。只有当脚本作为主程序运行时,才会执行if语句块中的代码。iris = load_iris().data  # iris = load_iris().data加载了一个名为iris的数据集,数据集是鸢尾花数据集。.data属性返回数据集的特征部分。h_value = hopkins_statistic(iris)  # h_value = hopkins_statistic(iris)调用了名为hopkins_statistic的函数,计算了数据集的Hopkins统计量,并将结果赋值给变量h_value。

相关文章:

数据挖掘 聚类度量

格式化之前的代码: import numpy as np#计算 import pandas as pd#处理结构化表格 import matplotlib.pyplot as plt#绘制图表和可视化数据的函数,通常与numpy和pandas一起使用。 from sklearn import metrics#聚类算法的评估指标。 from sklearn.clust…...

[Angular] 笔记 24:ngContainer vs. ngTemplate vs. ngContent

请说明 Angular 中 ngContainer, ngTemplate 和 ngContent 这三者之间的区别。 chatgpt 回答: 这三个在 Angular 中的概念是关于处理和组织视图的。 1. ngContainer: ngContainer 是一个虚拟的 HTML 容器,它本身不会在最终渲染…...

❀My排序算法学习之插入排序❀

目录 插入排序(Insertion Sort):) 一、定义 二、基本思想 三、示例 时间复杂度 空间复杂度 bash C++ 四、稳定性分析...

【算法题】30. 串联所有单词的子串

题目 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如,如果 words ["ab","cd","ef"], 那么 "…...

SAP-FI模块 处理自动生成会计凭证增强

ENHANCEMENT 2 ZEHENC_SAPMF05A. "active version * FI 20221215:固定资产业务过渡科目摘要增强功能 WAIT UP TO 1 SECONDS.READ TABLE xbseg WITH KEY hkont 1601990001. IF sy-subrc 0.DATA: lt_bkdf TYPE TABLE OF bkdf,lt_bkpf TYPE TABLE OF bkpf,…...

Shell脚本-bin/bash: 解释器错误: 没有那个文件或目录-完整路径执行-“/”引发的脑裂

引起该不适的一种可能以及解决方案,网上较多,比如: 但按以上方式操作,并经过查看,发现仍然未能解决问题。 因为两种方式执行,有一种能成功,有一种不能,刚开始未怀疑是文件问题&…...

React MUI(版本v5.15.2)详细使用

使用React MUI(版本v5.15.2)的详细示例。请注意,由于版本可能会有所不同,因此建议您查阅官方文档以获取最新的信息和示例。但是,我将根据我的知识库为您提供一些基本示例。 首先,确保您已经按照之前的说明…...

用CSS中的动画效果做一个转动的表

<!DOCTYPE html> <html lang"en"><head><meta charset"utf-8"><title></title><style>*{margin:0;padding:0;} /*制作表的样式*/.clock{width: 500px;height: 500px;margin:0 auto;margin-top:100px;border-rad…...

【linux】Linux管道的原理与使用场景

Linux管道是Linux命令行界面中一种强大的工具&#xff0c;它允许用户将多个命令链接起来&#xff0c;使得一个命令的输出可以作为另一个命令的输入。这种机制使得我们可以创建复杂的命令链&#xff0c;并在处理数据时提供了极大的灵活性。在本文中&#xff0c;我们将详细介绍Li…...

nvidia jetson xavier nx developer kit version emmc版重装系统

一、将开发板上的外置硬盘取下来格式化 二、在双系统ubuntu安装SDK Manager&#xff08;.deb文件&#xff09; SDK Manager | NVIDIA Developer sudo apt install ./sdkmanager_1.9.2-10884_amd64.deb 报错直接百度错误&#xff0c;执行相应命令即可 三、 运行SDK Manager …...

命令模式-实例使用

未使用命令模式的UML 使用命令模式后的UML public abstract class Command {public abstract void execute(); }public class Invoker {private Command command;/*** 为功能键注入命令* param command*/public void setCommand(Command command) {this.command command;}/***…...

将网页变身移动应用:网址封装成App的完全指南

什么是网址封装&#xff1f; 网址封装是一个将你的网站或网页直接嵌入到一个原生应用容器中的过程。用户可以通过下载你的App来访问网站&#xff0c;而无需通过浏览器。这种方式不仅提升了用户体验&#xff0c;还可利用移动设备的功能&#xff0c;如推送通知和硬件集成。 小猪…...

探讨kernel32.dll文件是什么,有效解决kernel32.dll丢失

在使用电脑时&#xff0c;你是否遇到过kernel32.dll丢失的困扰&#xff1f;面对这个问题&#xff0c;我们需要及时去解决kernel32.dll丢失的问题。接下来&#xff0c;我们将深入探讨kernel32.dll的功能以及其在操作系统和应用程序中的具体应用领域&#xff0c;相信这将对你解决…...

LOAM: Lidar Odometry and Mapping in Real-time 论文阅读

论文链接 LOAM: Lidar Odometry and Mapping in Real-time 0. Abstract 提出了一种使用二维激光雷达在6自由度运动中的距离测量进行即时测距和建图的方法 距离测量是在不同的时间接收到的&#xff0c;并且运动估计中的误差可能导致生成的点云的错误配准 本文的方法在不需要高…...

如何使用Docker将.Net6项目部署到Linux服务器(三)

目录 四 安装nginx 4.1 官网下载nginx 4.2 下载解压安装nginx 4.3 进行configure 4.4 执行make 4.5 查看nginx是否安装成功 4.6 nginx的一些常用命令 4.6.1 启动nginx 4.6.2 通过命令查看nginx是否启动成功 4.6.3 关闭Nginx 4.6.5 重启Nginx 4.6.6 杀掉所有Nginx进程 4.…...

《Spring Cloud学习笔记:分布式事务Seata》

解决分布式事务的方案有很多&#xff0c;但实现起来都比较复杂&#xff0c;因此我们一般会使用开源的框架来解决分布式事务问题。 在众多的开源分布式事务框架中&#xff0c;功能最完善、使用最多的就是阿里巴巴在2019年开源的Seata了。 1. 初识Seata Seata是 2019 年 1 月…...

MySQL:权限控制

要授予用户帐户权限&#xff0c;可以用GRANT命令。有撤销用户的权限&#xff0c;可以用REVOKE命令。这里以 MySQl 为例&#xff0c;介绍权限控制实际应用。 GRANT授予权限语法&#xff1a; GRANT privilege,[privilege],.. ON privilege_level TO user [IDENTIFIED BY passwo…...

安全生产知识竞赛活动方案

为进一步普及安全生产法律法规知识&#xff0c;增强安全意识&#xff0c;提高安全技能&#xff0c;经研究&#xff0c;决定举办以“加强安全法治、保障安全生产”为主题的新修订《安全生产法》知识竞赛活动&#xff0c;现将有关事项通知如下&#xff1a; 一、活动时间&#xf…...

2023 IoTDB Summit:天谋科技 CTO 乔嘉林《IoTDB 企业版 V1.3: 时序数据管理一站式解决方案》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…...

LangChain.js 实战系列:如何统计大模型使用的 token 使用量和花费

&#x1f4dd; LangChain.js 是一个快速开发大模型应用的框架&#xff0c;它提供了一系列强大的功能和工具&#xff0c;使得开发者能够更加高效地构建复杂的应用程序。LangChain.js 实战系列文章将介绍在实际项目中使用 LangChain.js 时的一些方法和技巧。 统计调用大模型的 to…...

基于多反应堆的高并发服务器【C/C++/Reactor】(中)EventLoop初始化

这个Dispatcher是一个事件分发模型&#xff0c;通过这个模型,就能够检测对应的文件描述符的事件的时候,可以使用epoll/poll/select,前面说过三选一。另外不管是哪一个底层的检测模型,它们都需要使用一个数据块,这个数据块就叫做DispatcherData。除此之外,还有另外一个部分,因为…...

OpenCV(Python)基础—9小时入门版

OpenCV(Python)基础—9小时入门版 # # Author : Mikigo # Time : 2021/12/1 # 一、一句话简介 OpenCV (Open Source Computer Vision Library) 是用 C 语言编写&#xff0c;提供 Python、Java 等语言 API的一个开源计算机视觉库。 二、安装 1、Debian 系使用 apt 安装 O…...

SpringBoot整合Canal

一 linux docker compose版本 1.第一步&#xff1a;基础环境 &#xff08;1&#xff09;第1步&#xff1a;安装jak、maven、git、nodejs、npm yum install maven mvn -v 安装maven时会帮安装jdkyum install git git --version 2.27.0yum in…...

用 Python 提取某一个公众号下的所有文章

当我们想要提取某一个公众号下的所有文章时&#xff0c;我们可以借助微信公众平台的开放接口&#xff0c;通过Python编写一个爬虫程序来实现。下面是一个示例代码&#xff0c;以及如何将其转化为一篇详细的微信公众号推文文章。 1. 导入所需库 首先&#xff0c;我们需要导入所…...

鸿蒙4.0实战教学—基础ArkTS(简易视频播放器)

构建主界面 主界面由视频轮播模块和多个视频列表模块组成&#xff0c;效果图如图&#xff1a; VideoData.ets中定义的视频轮播图数组SWIPER_VIDEOS和视频列表图片数组HORIZONTAL_VIDEOS。 // VideoData.ets import { HorizontalVideoItem } from ./HorizontalVideoItem; impo…...

4. 深入 Python 流程控制

​​​​​​ 4. 深入 Python 流程控制 除了前面介绍的 while 语句&#xff0c;Python 还从其它语言借鉴了一些流程控制功能&#xff0c;并有所改变。 4.1. if 语句 也许最有名的是 if 语句。例如: >>> x int(raw_input("Please enter an integer: "))…...

2000-2022年上市公司股票流动性指标数据/股票流动性Amihud(原始数据+计算代码+计算结果)

2000-2022年上市公司股票流动性指标数据/股票流动性Amihud&#xff08;原始数据计算代码计算结果&#xff09; 1、时间&#xff1a;2000-2022年 3、指标&#xff1a;证券代码_没有单位、交易日期_没有单位、日个股交易金额_元、考虑现金红利再投资的日个股回报率_没有单位、交…...

Unity 数据存储PlayerPrefs管理类

Unity 数据存储PlayerPrefs管理类 Unity 数据存储PlayerPrefs管理类实现存取实体类对象存储格式为Json格式Singleton.csInventoryEntity.csDataManager.cs用法如下 Unity 数据存储PlayerPrefs管理类 实现存取实体类对象 存储格式为Json格式 源码如下&#xff1a; Singleton…...

一篇文章学会如何使用 NestJS 过滤器处理系统全局异常情况

前言 在实际的应用开发中&#xff0c;你或许遇到过异常处理机制不统一或错误信息展示混乱的现象。为了解决这些问题&#xff0c;NestJS提供了一个优雅的解决方案&#xff1a;过滤器&#xff08;Filter&#xff09;。本文将从实际出发&#xff0c;向你介绍NestJS过滤器的基本概…...

ubuntu 守护进程 supervisor

# 安装 apt-get install supervisor# 检查 echo_supervisord_conf# 查看配置文件所在位置 # [include] # files /etc/supervisor/conf.d/*.conf ps -ef | grep supervisorcd /etc/supervisor/conf.d/lscat frp.conf[program:frp] command /data/work/frp/frpc -c /data/work/…...

中文购物网站模板/百度企业网盘

2019独角兽企业重金招聘Python工程师标准>>> 看完了google的GFS论文&#xff0c;趁热打铁写下了一点点读后感 1.果然和HDFS设计一样2.比较擅长处理连续读大文件的情况&#xff0c;对于随机读和频繁读取小文件则有短板&#xff0c;这与GFS的目标有关&#xff0c;它的…...

做百度手机网站优化/百度竞价点击软件奔奔

前面讲过如何用WInHex恢复数据&#xff0c;现在我们讲讲如何利用它制作磁盘镜像。打开winhex&#xff0c;我们看下起始分区表信息&#xff0c;由于教程原因&#xff0c;我们把分区表里面的数据全部填充为0。恢复原有的3个分区&#xff0c;只要把里面的数据填充正确即可。我们看…...

文档分享类网站建设/昆明网站seo服务

opencv下载&#xff1a;https://opencv.org/releases/ 下载链接&#xff1a;https://blog.csdn.net/bookzhan/article/details/104753855/ opencv_contrib:https://github.com/opencv/opencv_contrib/releases?after3.4.6...

做一个卖车的网站该怎么做/线上推广平台都有哪些

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请标明出处。 https://blog.csdn.net/lyhhj/article/details/49935345 最近小编搞了一个仿微信群聊头像的一个功能&#xff0c;分享给大家...工作中需要实现仿钉钉群头像的一个功能&#xff0c;就是个人的头像拼到一起显…...

南宁cms建站系统/bt兔子磁力搜索引擎最新版

题目传送门 题目大意&#xff1a; 我去好长啊不写了qwq 题解 NOIp 太恶心了&#xff0c;又出了一道模板题&#xff0c;这告诉了我们多刷板子的重要性。 没错&#xff0c;这是个动态dp的模板。 这题的转移方程为&#xff1a; {fi,0∑fson,1fi,1vali∑max⁡(fson,0,fson,1)\…...

wordpress 快递查询 插件/长沙网站制作主要公司

CentOS 6.5自带的是Python 2.6.6&#xff0c;yum中最新的也是Python 2.6.6&#xff0c;只能下载Python&#xff12;.7.9的源码自己安装咯. 操作步骤如下: 1.安装devtoolset(开发者工具集是专为开发人员在CentOS或Red Hat Enterprise Linux平台。 它提供了GNU编译器&#xff0c…...