当前位置: 首页 > news >正文

WeNet语音识别分词制作词云图

在线体验 ,点击识别语音需要等待一会,文件太大缓存会报错
在这里插入图片描述

介绍

本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库,结合语音识别(WeNet)和词云生成,构建一个功能丰富的应用程序。我们将深入了解代码示例中的不同部分,并解释其如何实现音频处理、语音识别和文本可视化等功能。

代码概览

首先,让我们来看一下这个应用的主要功能和组成部分:

  1. 导入必要的库和模型加载

    import streamlit as st
    import jieba
    from wordcloud import WordCloud
    import matplotlib.pyplot as plt
    from pydub import AudioSegment
    from noisereduce import reduce_noise
    import wenet
    import base64
    import os
    

    在这一部分,我们导入了必要的 Python 库,包括 Streamlit、jieba(用于中文分词)、WordCloud(用于生成词云)、matplotlib(用于图表绘制)、pydub(用于音频处理)等。同时,我们还加载了 wenet 库,该库包含用于中英文语音识别的预训练模型。

  2. 语音识别的函数定义

    def recognition(audio, lang='CN'):# 识别语音内容并返回文本# ...
    

    这个函数利用 wenet 库中的预训练模型,根据上传的音频文件进行语音识别。根据用户选择的语言(中文或英文),函数返回识别出的文本。

  3. 音频处理函数定义

    def reduce_noise_and_export(input_file, output_file):# 降噪并导出处理后的音频文件# ...
    

    这个函数对上传的音频文件进行降噪处理,并导出处理后的音频文件,以提高语音识别的准确性。

  4. 关键词提取函数定义

    def extract_keywords(result):# 提取识别文本中的关键词# ...
    

    此函数使用 jieba 库对识别出的文本进行分词,并返回关键词列表。

  5. Base64 编码和下载链接函数定义

    def save_base64(uploaded_file):# 将上传文件转换为 Base64 编码# ...def get_base64_link(file_path, link_text):# 生成下载处理后音频的 Base64 链接# ...
    

    这两个函数分别用于将上传的音频文件转换为 Base64 编码,并生成可下载处理后音频的链接。

  6. 主函数 main()

    def main():# Streamlit 应用的主要部分# ...
    

    主函数包含了 Streamlit 应用程序的主要逻辑,包括文件上传、语言选择、按钮触发的操作等。

  7. 运行主函数

    if __name__ == "__main__":main()
    

    此部分代码确保主函数在运行时被调用。

应用程序功能

通过上述功能模块的组合,这个应用程序可以完成以下任务:

  • 用户上传 WAV 格式的音频文件。
  • 选择要进行的语言识别类型(中文或英文)。
  • 降噪并处理上传的音频文件,以提高识别准确性。
  • 对处理后的音频进行语音识别,返回识别结果。
  • 从识别结果中提取关键词,并将其显示为词云图。
  • 提供处理后音频的下载链接,方便用户获取处理后的音频文件。

希望这篇博客能够帮助你理解代码示例的每个部分,并激发你探索更多有趣应用的灵感!

streamlit应用程序

import streamlit as st
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from pydub import AudioSegment
from noisereduce import reduce_noise
import wenet
import base64
import os
# 载入模型
chs_model = wenet.load_model('chinese')
en_model = wenet.load_model('english')# 执行语音识别的函数
def recognition(audio, lang='CN'):if audio is None:return "输入错误!请上传音频文件!"if lang == 'CN':ans = chs_model.transcribe(audio)elif lang == 'EN':ans = en_model.transcribe(audio)else:return "错误!请选择语言!"if ans is None:return "错误!没有文本输出!请重试!"txt = ans['text']return txt# 降噪并导出处理后的音频的函数
def reduce_noise_and_export(input_file, output_file):try:audio = AudioSegment.from_wav(input_file)audio_array = audio.get_array_of_samples()reduced_noise = reduce_noise(audio_array, audio.frame_rate)reduced_audio = AudioSegment(reduced_noise.tobytes(),frame_rate=audio.frame_rate,sample_width=audio.sample_width,channels=audio.channels)reduced_audio.export(output_file, format="wav")return output_fileexcept Exception as e:return f"发生错误:{str(e)}"def extract_keywords(result):word_list = jieba.lcut(result)return word_listdef save_base64(uploaded_file):with open(uploaded_file, "rb") as file:audio_content = file.read()encoded = base64.b64encode(audio_content).decode('utf-8')return encodeddef main():st.title("语音识别与词云生成")uploaded_file = st.file_uploader("上传 WAV 文件", type="wav")if uploaded_file:st.audio(uploaded_file, format='audio/wav')language_choice = st.radio("选择语言", ('CN', 'EN'))bu=st.button("识别语音")if bu:if uploaded_file:output_audio_path = os.path.basename(uploaded_file.name)processed_audio_path = reduce_noise_and_export(uploaded_file, output_audio_path)if not processed_audio_path.startswith("发生错误"):result = recognition(processed_audio_path, language_choice)st.write("识别结果:" + result)keywords = extract_keywords(result)st.write("提取的关键词:", keywords)text = " ".join(keywords)wc = WordCloud(font_path="SimSun.ttf",collocations=False, width=800, height=400, margin=2, background_color='white').generate(text.lower())st.image(wc.to_array(), caption='词云')# 提供处理后音频的下载链接st.markdown(get_base64_link(processed_audio_path, '下载降噪音频'), unsafe_allow_html=True)    else:st.warning("请上传文件")
def get_base64_link(file_path, link_text):with open(file_path, "rb") as file:audio_content = file.read()encoded = base64.b64encode(audio_content).decode('utf-8')href = f'<a href="data:audio/wav;base64,{encoded}" download="processed_audio.wav">{link_text}</a>'return hrefif __name__ == "__main__":main()

requirements.txt

wenet @ git+https://github.com/wenet-e2e/wenet
streamlit
wordcloud
pydub
jieba
noisereduce

在这里插入图片描述

体验链接: 长音频切换识别

import streamlit as st
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from pydub import AudioSegment
from noisereduce import reduce_noise
import wenet
import base64
import os
import numpy as np# 载入模型
chs_model = wenet.load_model('chinese')
en_model = wenet.load_model('english')# 执行语音识别的函数
def recognition(audio, lang='CN'):if audio is None:return "输入错误!请上传音频文件!"if lang == 'CN':ans = chs_model.transcribe(audio)elif lang == 'EN':ans = en_model.transcribe(audio)else:return "错误!请选择语言!"if ans is None:return "错误!没有文本输出!请重试!"txt = ans['text']return txtdef reduce_noise_segmented(input_file,chunk_duration_ms,frame_rate):try:audio = AudioSegment.from_file(input_file,format="wav")# 将双声道音频转换为单声道audio = audio.set_channels(1)# 压缩音频的帧率为 16000audio = audio.set_frame_rate(frame_rate)duration = len(audio)# 分段处理音频chunked_audio = []start = 0while start < duration:end = min(start + chunk_duration_ms, duration)chunk = audio[start:end]chunked_audio.append(chunk)start = endreturn chunked_audioexcept Exception as e:st.error(f"发生错误:{str(e)}")return Nonedef extract_keywords(result):word_list = jieba.lcut(result)return word_listdef get_base64_link(file_path, link_text):with open(file_path, "rb") as file:audio_content = file.read()encoded = base64.b64encode(audio_content).decode('utf-8')href = f'<a href="data:audio/wav;base64,{encoded}" download="processed_audio.wav">{link_text}</a>'return hrefdef main():st.title("语音识别与词云生成")uploaded_file = st.file_uploader("上传音乐文件", type="wav")if uploaded_file:st.audio(uploaded_file, format='audio/wav')segment_duration = st.slider("分段处理时长(毫秒)", min_value=1000, max_value=10000, value=5000, step=1000)frame_rate = st.slider("压缩帧率", min_value=8000, max_value=48000, value=16000, step=1000)language_choice = st.selectbox("选择语言", ('中文', '英文'))bu=st.button("识别语音")if bu:if uploaded_file:st.success("正在识别中,请稍等...")output_audio_path = os.path.basename(uploaded_file.name)chunked_audio = reduce_noise_segmented(uploaded_file,  segment_duration, frame_rate)# 计算总的音频段数total_chunks = len(chunked_audio)if total_chunks>0:# 创建进度条progress_bar = st.progress(0)# 对每个音频段进行降噪并合并reduced_noise_chunks = []result_array = []for i, chunk in enumerate(chunked_audio):audio_array = chunk.get_array_of_samples()reduced_noise = reduce_noise(np.array(audio_array), chunk.frame_rate)reduced_chunk = AudioSegment(reduced_noise.tobytes(),frame_rate=chunk.frame_rate,sample_width=chunk.sample_width,channels=chunk.channels)reduced_noise_chunks.append(reduced_chunk)language=""if language_choice=='中文':language="CN"else:language="EN"path="第"+str(i+1)+"段音频.wav"reduced_chunk.export(path,format="wav")while os.path.exists(path):result = recognition(path, language)if result:st.write(f"第{i+1}段音频识别结果:" + result)result_array.append(result)break# 更新进度条的值progress = int((i + 1) / total_chunks * 100)progress_bar.progress(progress)st.write("识别的结果为:","".join(result_array))keywords = extract_keywords("".join(result_array))st.write("提取的关键词:", keywords)text=" ".join(keywords)wc = WordCloud(font_path="SimSun.ttf",collocations=False, width=800, height=400, margin=2, background_color='white').generate(text.lower())st.image(wc.to_array(), caption='词云')# 合并降噪后的音频段reduced_audio = reduced_noise_chunks[0]for i in range(1, len(reduced_noise_chunks)):reduced_audio += reduced_noise_chunks[i]# 导出处理后的音频文件reduced_audio.export(output_audio_path,format="wav")while os.path.exists(output_audio_path):# 提供处理后音频的下载链接st.markdown(get_base64_link(output_audio_path, '下载降噪音频'), unsafe_allow_html=True)    breakelse:st.warning("请上传文件")if __name__ == "__main__":main()

相关文章:

WeNet语音识别分词制作词云图

在线体验 ,点击识别语音需要等待一会&#xff0c;文件太大缓存会报错 介绍 本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库&#xff0c;结合语音识别&#xff08;WeNet&#xff09;和词云生成&#xff0c;构建一个功能丰富的应用程序。我们将深入了解代码…...

Proxyman:现代本地Web调试代理工具

1. 简介 1.1 什么是Proxyman&#xff1f; Proxyman是一款专为macOS设计的现代本地Web调试代理工具&#xff0c;它不仅支持macOS平台&#xff0c;还能无缝地与iOS和Android设备进行集成。作为一个网络调试工具&#xff0c;Proxyman的设计旨在提供高性能、直观且功能丰富的解决…...

k8s中DaemonSet实战详解

一、DaemonSet介绍 DaemonSet 的主要作用&#xff0c;是在 Kubernetes 集群里&#xff0c;运行一个 Daemon Pod。DaemonSet 只管理 Pod 对象&#xff0c;然后通过 nodeAffinity 和 Toleration 这两个调度器参数的功能&#xff0c;保证了每个节点上有且只有一个 Pod。 二、Daem…...

信号处理设计模式

问题 如何编写信号安全的应用程序&#xff1f; Linux 应用程序安全性讨论 场景一&#xff1a;不需要处理信号 应用程序实现单一功能&#xff0c;不需要关注信号 如&#xff1a;数据处理程序&#xff0c;文件加密程序&#xff0c;科学计算程序 场景二&#xff1a;需要处理信…...

Linux权限的基本理解

一:&#x1f6a9;Linux中的用户 1.1&#x1f966;用户的分类 &#x1f31f;在Linux中用户可以被分为两种用户: 超级用户(root):可以在Linux系统中做各种事情而不被约束普通用户:只能做有限的事情被权限约束 在实际操作时超级用户的命令提示符为#,普通用户的命令提示符为$,可…...

AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

【课程简介】 本课程介绍了chatGPT相关模型的具体案例实践&#xff0c;通过实操更好的掌握chatGPT的概念与应用场景&#xff0c;可以作为chatGPT领域学习者的入门到进阶级课程。 【课程时长】 1天&#xff08;6小时/天&#xff09; 【课程对象】 理工科本科及以上&#xff0…...

nat地址转换

原理 将内网地址转换成外网地址 方式 掌握动态NAT的配置方法 掌握Easy IP的配置方法 掌握NAT Server的配置方法 实验 r1 r2 是内网 ar1 ip地址 ip add ip地址 掩码 ip route-static 0.0.0.0 0 192.168.1.254 默认网关 吓一跳网关 相等于设置了网关 ar2 …...

第12课 循环综合举例

文章目录 前言一、循环综合举例1. 质数判断问题2. 百人百砖问题3. 猴子吃桃问题4. 质因数分解问题5. 数字统计问题。 二、课后练习2. 末尾3位数问题3. 求自然常数e4. 数据统计问题5. 买苹果问题。6. 找5的倍数问题。 总结 前言 本课使用循环结构&#xff0c;介绍了以下问题的解…...

Tuxera NTFS for Mac2024免费Mac读写软件下载教程

在日常生活中&#xff0c;我们使用Mac时经常会遇到外部设备不能正常使用的情况&#xff0c;如&#xff1a;U盘、硬盘、软盘等等一系列存储设备&#xff0c;而这些设备的格式大多为NTFS&#xff0c;Mac系统对NTFS格式分区存在一定的兼容性问题&#xff0c;不能正常读写。 那么什…...

C++ 具名要求

此页面中列出的具名要求&#xff0c;是 C 标准的规范性文本中使用的具名要求&#xff0c;用于定义标准库的期待。 某些具名要求在 C20 中正在以概念语言特性进行形式化。在那之前&#xff0c;确保以满足这些要求的模板实参实例化标准库模板是程序员的重担。若不这么做&#xf…...

大创项目推荐 深度学习二维码识别

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…...

C++初阶——基础知识(函数重载与引用)

目录 1.命名冲突 2.命名空间 3.缺省参数 4.函数重载 1.函数重载的特点包括&#xff1a; 2.函数重载的好处包括&#xff1a; 3.引用 引用的特点包括 引用的主要用途包括 引用和指针 引用 指针 类域 命名空间域 局部域 全局域 第一个关键字 命名冲突 同一个项目之间冲…...

车载电子电器架构 —— 电子电气系统开发角色定义

车载电子电器架构 —— 电子电气系统开发角色定义 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 注:本文12000字,深度思考者进!!! 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的…...

最新Redis7哨兵模式(保姆级教学)

一定一定要把云服务器的防火墙打开一定要&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;否则不成功&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…...

Redis原理及常见问题

高性能之道 单线程模型基于内存操作epoll多路复用模型高效的数据存储结构redis的单线程指的是数据处理使用的单线程,实际上它主要包含 IO线程:处理网络消息收发主线程:处理数据读写操作,包括事务、Lua脚本等持久化线程:执行RDB或AOF时,使用持久化线程处理,避免主线程的阻…...

nvm 的安装及使用 (Node版本管理器)

目录 1、nvm 介绍 2、nvm安装 3、nvm 使用 4、node官网可以查看node和npm对应版本 5、nvm安装指定版本node 6、安装cli脚手架 1、nvm 介绍 NVM 全称 node.js version management &#xff0c;专门针对 node 版本进行管理的工具&#xff0c;通过它可以安装和切换不同版本的…...

【Yii2】数据库查询方法总结

目录 1.查找单个记录&#xff1a; 2.查找多个记录&#xff1a; 3.条件查询&#xff1a; 4.关联查询&#xff1a; 假设User模型有一个名为orders的多对一关联关系。 5.排序和分组&#xff1a; 6.数据操作&#xff1a; 7.事务处理&#xff1a; 8.命令查询&#xff1a; 9…...

区块链的三难困境是什么,如何解决?

人们需要保持社交、工作和睡眠之间的平衡&#xff0c;并且努力和谐相处。同样的概念也反映在区块链的三难困境中。 区块链三难困境是一个术语&#xff0c;指的是现有区块链的局限性&#xff1a;可扩展性、安全性和去中心化。这是一个存在了几十年的设计问题&#xff0c;其问题的…...

oCPC实践录 | oCPM的秘密

前言 笔者从这几方面介绍oCPM&#xff0c;并一一分析平台侧宣称的oCPM相比oCPC的优势&#xff0c;并解开其中的秘密。 1&#xff09;什么是oCPM? 2&#xff09;oCPC与oCPM的异同 3&#xff09;平台宣称oCPM的优势 4&#xff09;oCPM真正的秘密 5&#xff09;oCPM下的点击率与…...

【Linux Shell学习笔记】Linux Shell的位置参数与函数

一、位置参数 位置参数&#xff0c;也被称之为位置变量&#xff0c;通过位置参数&#xff0c;可以在执行程序的时候&#xff0c;向程序传递数据 1.1 shell接收参数的方法 1.2 向shell传递参数的方法 二、函数 2.1 函数基础 2.1.1 函数简介 函数本质上就是一个代码块&#xf…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...