当前位置: 首页 > news >正文

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类

  • 监督学习&无监督学习
  • K-means
      • K-means聚类的优点:
      • K-means的局限性:
      • 解决方案:
  • 高斯混合模型(Gaussian Mixture Models,GMM)
      • 多维高斯分布的概率密度函数:
      • 高斯混合模型(Gaussian Mixture Model,GMM)
        • 模型形式:
        • EM算法迭代过程:
      • K-means 与 高斯混合模型(GMM)的对比:
        • K-means:
        • 高斯混合模型(GMM):
      • 高斯混合模型(GMM)的优缺点:
        • 优点:
        • 缺点:
      • 选择应用场景:
  • 层次聚类
    • 簇之间的相似性度量
      • 最小距离
      • 最大距离
      • 平均距离
      • 中心点距离
      • 凝聚聚类过程:
  • DBSCAN
      • DBSCAN算法步骤:
      • DBSCAN的特点:
      • 参数说明:
      • 优势与局限性:
        • 优势:
        • 局限性:
    • 例题

谨以此博客作为复习期间的记录

监督学习&无监督学习

监督学习和无监督学习是机器学习中两种基本的学习范式。

  1. 监督学习

    • 定义:监督学习是一种机器学习范式,在这种范式中,模型通过已标记的训练数据进行训练,每个训练样本都有一个标签或目标值。
    • 特点:模型在学习过程中使用输入数据与其对应的已知输出(标签或目标值)之间的关系,目的是学习从输入到输出的映射关系,以便对新的未知数据做出准确的预测或分类。
    • 优点
      • 可以利用已知的标签信息来进行精确的预测或分类。
      • 在训练过程中可以评估模型的性能,并进行调整和改进。
      • 适用于大多数真实世界的问题,如图像识别、语音识别、自然语言处理等。
    • 缺点
      • 需要大量标记好的训练数据,数据标记成本高。
      • 对于某些问题,标签数据可能不容易获得或标记。
  2. 无监督学习

    • 定义:无监督学习是一种机器学习方法,其中模型根据未标记的数据进行学习,没有对应的目标输出。
    • 特点:在无监督学习中,模型试图从数据中发现隐藏的模式、结构或特征,而不需要预先定义的输出标签。
    • 优点
      • 可以发现数据中的潜在结构、关联和规律,有助于理解数据本身。
      • 适用于数据探索和降维等任务。
      • 不需要标签,因此不受标签获取成本的影响。
    • 缺点
      • 对于一些任务,无法直接量化或验证模型学到的信息。
      • 在训练过程中难以衡量模型的性能。

K-means

在这里插入图片描述

K-means聚类的优点:

  1. 简单快速:K-means是一种直观且易于实现的聚类算法,计算效率高,适用于大规模数据集。
  2. 可扩展性:对于大规模数据,K-means算法具有良好的可扩展性和高效性。
  3. 对高斯分布接近的簇效果较好:当簇近似服从高斯分布时,K-means算法的聚类效果较好。

K-means的局限性:

  1. 硬划分数据:K-means对数据点进行硬划分,即每个数据点只能属于一个簇,当数据存在噪声或异常值时,可能会导致点被错误分配到不合适的簇中。
  2. 对簇形状和大小的假设:K-means假设簇是球形的,并且每个簇的概率相等,这在某些场景下可能不符合实际情况。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

解决方案:

针对K-means的局限性,可以采用以下解决方案:

  1. 软聚类方法:使用软聚类方法,如高斯混合模型(Gaussian Mixture Models,GMM),允许数据点以一定的概率属于不同的簇,而不是强制性地将其分配到唯一的簇。
  2. 采用不同形状的簇:对非球形簇结构,可以考虑使用其他形式的聚类算法,如密度聚类(DBSCAN)等,这些算法对数据的形状和密度分布没有特定的假设。

高斯混合模型(Gaussian Mixture Models,GMM)

多维高斯分布的概率密度函数:

对于一个 D D D 维的随机向量 x = ( x 1 , x 2 , … , x D ) T \mathbf{x} = (x_1, x_2, \dots, x_D)^T x=(x1,x2,,xD)T,其多维高斯分布的概率密度函数可以表示为:

N ( x ∣ μ , Σ ) = 1 ( 2 π ) D / 2 ∣ Σ ∣ 1 / 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right) N(xμ,Σ)=(2π)D/2Σ1/21exp(21(xμ)TΣ1(xμ))

其中,

  • μ = ( μ 1 , μ 2 , … , μ D ) T \boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_D)^T μ=(μ1,μ2,,μD)T 是均值向量,表示随机向量每个维度的均值。
  • Σ \boldsymbol{\Sigma} Σ 是协方差矩阵,表示随机向量各维度之间的协方差。
  • ∣ Σ ∣ |\boldsymbol{\Sigma}| Σ 是协方差矩阵的行列式。
  • T ^T T 表示向量的转置。
  • exp ⁡ ( ⋅ ) \exp(\cdot) exp() 是自然指数函数。

高斯混合模型(Gaussian Mixture Model,GMM)

模型形式:

假设有 N N N 个数据点 x 1 , x 2 , … , x N \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N x1,x2,,xN,GMM 的概率密度函数可表示为:

p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , Σ k ) p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) p(x)=k=1KπkN(xμk,Σk)

其中,

  • K K K 是高斯分布的数量(聚类数目);
  • π k \pi_k πk 是第 k k k 个高斯分布的权重,满足 ∑ k = 1 K π k = 1 \sum_{k=1}^{K} \pi_k = 1 k=1Kπk=1
  • N ( x ∣ μ k , Σ k ) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) N(xμk,Σk) 是多维高斯分布密度函数, μ k \boldsymbol{\mu}_k μk 是第 k k k 个高斯分布的均值向量, Σ k \boldsymbol{\Sigma}_k Σk 是其协方差矩阵。
EM算法迭代过程:
  1. 初始化:随机初始化模型参数(各高斯分布的均值、协方差矩阵和权重)。
  2. E步骤(Expectation)
    • 计算每个数据点 x n \mathbf{x}_n xn 属于每个高斯分布的后验概率,即第 k k k 个高斯分布生成第 n n n 个数据点的概率:
      γ ( z n k ) = π k N ( x n ∣ μ k , Σ k ) ∑ j = 1 K π j N ( x n ∣ μ j , Σ j ) \gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} γ(znk)=j=1KπjN(xnμj,Σj)πkN(xnμk,Σk)
  3. M步骤(Maximization)
    • 重新估计参数:
      • 更新每个高斯分布的权重 π k \pi_k πk
        π k = 1 N ∑ n = 1 N γ ( z n k ) \pi_k = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk}) πk=N1n=1Nγ(znk)
      • 更新每个高斯分布的均值 μ k \boldsymbol{\mu}_k μk
        μ k = ∑ n = 1 N γ ( z n k ) x n ∑ n = 1 N γ ( z n k ) \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk})\mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{nk})} μk=n=1Nγ(znk)n=1Nγ(znk)xn
      • 更新每个高斯分布的协方差矩阵 Σ k \boldsymbol{\Sigma}_k Σk
        Σ k = ∑ n = 1 N γ ( z n k ) ( x n − μ k ) ( x n − μ k ) T ∑ n = 1 N γ ( z n k ) \boldsymbol{\Sigma}_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^{N} \gamma(z_{nk})} Σk=n=1Nγ(znk)n=1Nγ(znk)(xnμk)(xnμk)T
  4. 重复迭代:重复执行E步骤和M步骤,直到模型参数收敛或达到预设的迭代次数。

在EM算法中,E步骤计算数据点属于每个高斯分布的后验概率,M步骤根据这些后验概率重新估计模型参数,迭代更新直至收敛。这个过程旨在最大化观测数据的似然函数,使得模型能够更好地拟合数据。

K-means 与 高斯混合模型(GMM)的对比:

K-means:
  • 硬聚类算法:每个数据点仅属于一个簇。
  • 假设:假定簇为球形,并对数据进行硬划分。
  • 速度快:简单且计算效率高,适用于大规模数据集。
高斯混合模型(GMM):
  • 软聚类算法:允许一个数据点以一定概率分配到不同的聚类中心。
  • 假设:允许簇有不同形状和大小,并用高斯分布建模数据分布。
  • 灵活性:适用于更广泛的数据形状和分布。
  • 更复杂的模型:与K-means相比,GMM具有更复杂的模型和参数(均值、协方差、权重)。

高斯混合模型(GMM)的优缺点:

优点:
  1. 灵活性:对数据分布的假设更加灵活,可以拟合各种形状和大小的簇。
  2. 软聚类:允许数据以一定概率属于不同的聚类中心,更符合实际场景。
  3. 能量表达能力强:GMM是一个强大的建模工具,能够捕获数据中的复杂关系。
缺点:
  1. 计算复杂度高:相比于K-means,GMM具有更高的计算复杂度,特别是在高维数据上。
  2. 对初始值敏感:GMM对于初始参数值敏感,不同的初始值可能会导致不同的聚类结果。
  3. 可能陷入局部最优解:迭代优化过程可能陷入局部最优解,影响模型的效果。

选择应用场景:

  • 如果数据集具有明显的簇结构、数据分布近似球形,并且对计算速度要求较高,K-means可能是一个不错的选择。
  • 如果数据集具有复杂的形状、大小和分布,或者需要更丰富的数据建模,GMM可能更适合。
  • 通常,可以根据数据的特点和任务的需求来选择适合的聚类算法。

层次聚类

簇之间的相似性度量

最小距离

在这里插入图片描述
适合发现凸型簇或者非等向性的簇,对异常值不敏感。它衡量的是两个簇中最近的两个数据点的距离,所以在形成簇的过程中,容易受到离群点的影响。

最大距离

在这里插入图片描述
适合发现球状簇,能够很好地处理不同大小和密度的簇,对噪声和异常值比较稳健。它考虑的是两个簇中距离最远的两个数据点之间的距离,使得形成的簇间距离更大。

平均距离

在这里插入图片描述
对各种类型的簇都相对适用,通常被视为对最小距离和最大距离的折衷方案。它计算两个簇中所有数据点之间的平均距离,能够平衡最小和最大距离法的影响。

中心点距离

在这里插入图片描述
考虑簇之间的中心点(质心)之间的距离。这种方法对异常值相对较敏感,因为它完全依赖于簇的中心点,并且不适合非凸形状的簇。

层次聚类是一种按照层次结构组织的聚类方法,其主要思想是将数据点逐步合并或分割,形成一个层次化的聚类结构。层次聚类方法有两种主要的方法:凝聚聚类(Agglomerative Clustering)和分裂聚类(Divisive Clustering)。这里我将介绍凝聚聚类的过程。

凝聚聚类过程:

凝聚聚类是一种自底向上的聚类方法,其步骤如下:

  1. 初始化

    • 将每个数据点视为一个单独的簇。
  2. 计算相似度或距离

    • 计算所有数据点之间的相似度或距离(如欧氏距离、曼哈顿距离、相关系数等)。
  3. 合并最近的簇

    • 找到相似度或距离最小的两个簇,并将它们合并成一个新的簇。
    • 合并簇的方式可以根据不同的距离度量方法来确定,比如单链接(single-linkage)、全链接(complete-linkage)、平均链接(average-linkage)等。
  4. 更新相似度矩阵

    • 更新相似度矩阵,重新计算新簇与其他簇之间的距离或相似度。
  5. 重复合并步骤

    • 重复进行合并步骤,不断合并距离最近的簇,直到满足某个停止条件(比如指定簇的数量、距离阈值等)。
  6. 构建聚类树(Dendrogram)

    • 沿着合并过程,可以记录每次合并的簇以及它们的距离,构建层次聚类树或者称为树状图(Dendrogram)。
  7. 树状图的剪枝(可选)

    • 可以根据业务需求或者树状图的结构,通过剪枝来选择最终的聚类结果,确定簇的数量。

凝聚聚类方法将每个数据点作为一个簇,然后通过不断合并最接近的簇,逐步形成层次化的聚类结构。最终,通过聚类树(Dendrogram)或剪枝得到最终的聚类结果。

DBSCAN

在这里插入图片描述
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,能够识别具有不同密度的样本点,并能够有效地处理噪声点。DBSCAN通过定义“邻域”和“核心点”来识别簇,并能够发现任意形状的簇结构。

DBSCAN算法步骤:

  1. 定义邻域:

    • 以一个指定的距离阈值 ε \varepsilon ε 作为半径,对每个数据点 p \mathbf{p} p 进行邻域定义。
    • 如果在以 p \mathbf{p} p 为中心,半径为 ε \varepsilon ε 的圆球内包含超过指定数量(MinPts)的点,则 p \mathbf{p} p 被视为核心点。
  2. 寻找核心点和连接簇:

    • 根据第一步的定义,寻找所有核心点,并将每个核心点的邻域内的点归为同一个簇。
    • 如果点 q \mathbf{q} q p \mathbf{p} p 的邻域内,且 q \mathbf{q} q 也是核心点,则将 q \mathbf{q} q 的簇合并到 p \mathbf{p} p 所在的簇中。
  3. 处理噪声点:

    • 将不能成为核心点,也不在任何核心点的邻域内的数据点视为噪声点或边界点。

DBSCAN的特点:

  • 能处理任意形状的簇:相比于K-means等硬聚类算法,DBSCAN能够发现任意形状的簇,对簇的形状没有特定的假设。
  • 对噪声点鲁棒:DBSCAN能够识别和过滤噪声点,将其视为离群点。
  • 不需要提前指定簇的数量:与K-means等需要提前指定簇数量的算法不同,DBSCAN不需要这个先验信息。

参数说明:

  • ε \varepsilon ε:邻域的半径大小。
  • MinPts:定义核心点时所需的最小邻域点数。

优势与局限性:

优势:
  • 能够识别任意形状的簇结构。
  • 对噪声和离群点有较好的鲁棒性。
  • 不需要提前指定簇的数量。
局限性:
  • 对于密度不均匀的数据或具有差异密度的簇效果可能不理想。
  • 对于高维数据集,由于“维度灾难”问题,需要谨慎选择距离阈值和邻域点数。

例题

在这里插入图片描述

在这里插入图片描述

import math
import numpy as np
data=[[5.9,  3.2],
[4.6,  2.9],
[6.2,  2.8],
[4.7,  3.2],
[5.5,  4.2],
[5.0,  3.0],
[4.9,  3.1],
[6.7,  3.1], 
[5.1,  3.8], 
[6.0,  3.0]]center = [[6.2,3.2],[6.6,3.7],[6.5,3.0]]
def cal_distance(point1, point2):# 计算两点之间的欧氏距离distance = math.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)return distance
def get_min_index(lst):# 获取最小值min_value = min(lst)# 获取最小值的下标min_index = lst.index(min_value)return min_indexdata_dict = {0:[],1:[],2:[]}for i in data:tmp = []print("点:",i,end = '\t')for j in center:tmp.append(round(cal_distance(i,j),2))print(f"距离类别{center.index(j)}的距离:",round(cal_distance(i,j),2),end = '\t')data_dict[get_min_index(tmp)].append(i)print("分配给类别:",get_min_index(tmp))for i in data_dict.keys():print(f"类别{i}的中心为:{np.array(data_dict[i]).mean(axis = 0)}")

输出:

点: [5.9, 3.2]	距离类别0的距离: 0.3	距离类别1的距离: 0.86	距离类别2的距离: 0.63	分配给类别: 0
点: [4.6, 2.9]	距离类别0的距离: 1.63	距离类别1的距离: 2.15	距离类别2的距离: 1.9	分配给类别: 0
点: [6.2, 2.8]	距离类别0的距离: 0.4	距离类别1的距离: 0.98	距离类别2的距离: 0.36	分配给类别: 2
点: [4.7, 3.2]	距离类别0的距离: 1.5	距离类别1的距离: 1.96	距离类别2的距离: 1.81	分配给类别: 0
点: [5.5, 4.2]	距离类别0的距离: 1.22	距离类别1的距离: 1.21	距离类别2的距离: 1.56	分配给类别: 1
点: [5.0, 3.0]	距离类别0的距离: 1.22	距离类别1的距离: 1.75	距离类别2的距离: 1.5	分配给类别: 0
点: [4.9, 3.1]	距离类别0的距离: 1.3	距离类别1的距离: 1.8	距离类别2的距离: 1.6	分配给类别: 0
点: [6.7, 3.1]	距离类别0的距离: 0.51	距离类别1的距离: 0.61	距离类别2的距离: 0.22	分配给类别: 2
点: [5.1, 3.8]	距离类别0的距离: 1.25	距离类别1的距离: 1.5	距离类别2的距离: 1.61	分配给类别: 0
点: [6.0, 3.0]	距离类别0的距离: 0.28	距离类别1的距离: 0.92	距离类别2的距离: 0.5	分配给类别: 0
类别0的中心为:[5.17142857 3.17142857]
类别1的中心为:[5.5 4.2]
类别2的中心为:[6.45 2.95]

相关文章:

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案: 高斯混合模型(Gaussian Mixture Models,GMM)多维高斯分布的概率密度函数:高斯混合模型&#xff…...

Python中property特性属性是什么

在Java中,通常在类中定义的成员变量为私有变量,在类的实例中不能直接通过对象.属性直接操作,而是要通过getter和setter来操作私有变量。 而在Python中,因为有property这个概念,所以不需要写getter和setter一堆重复的代…...

vue3 全局配置Axios实例

目录 前言 配置Axios实例 页面使用 总结 前言 Axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js 环境。它提供了一种简单、一致的 API 来处理HTTP请求,支持请求和响应的拦截、转换、取消请求等功能。关于它的作用: 发起 HTTP …...

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.【EI级】 Matlab实现TCN-BiGRU-Mult…...

WeNet语音识别分词制作词云图

在线体验 ,点击识别语音需要等待一会,文件太大缓存会报错 介绍 本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库,结合语音识别(WeNet)和词云生成,构建一个功能丰富的应用程序。我们将深入了解代码…...

Proxyman:现代本地Web调试代理工具

1. 简介 1.1 什么是Proxyman? Proxyman是一款专为macOS设计的现代本地Web调试代理工具,它不仅支持macOS平台,还能无缝地与iOS和Android设备进行集成。作为一个网络调试工具,Proxyman的设计旨在提供高性能、直观且功能丰富的解决…...

k8s中DaemonSet实战详解

一、DaemonSet介绍 DaemonSet 的主要作用,是在 Kubernetes 集群里,运行一个 Daemon Pod。DaemonSet 只管理 Pod 对象,然后通过 nodeAffinity 和 Toleration 这两个调度器参数的功能,保证了每个节点上有且只有一个 Pod。 二、Daem…...

信号处理设计模式

问题 如何编写信号安全的应用程序? Linux 应用程序安全性讨论 场景一:不需要处理信号 应用程序实现单一功能,不需要关注信号 如:数据处理程序,文件加密程序,科学计算程序 场景二:需要处理信…...

Linux权限的基本理解

一:🚩Linux中的用户 1.1🥦用户的分类 🌟在Linux中用户可以被分为两种用户: 超级用户(root):可以在Linux系统中做各种事情而不被约束普通用户:只能做有限的事情被权限约束 在实际操作时超级用户的命令提示符为#,普通用户的命令提示符为$,可…...

AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

【课程简介】 本课程介绍了chatGPT相关模型的具体案例实践,通过实操更好的掌握chatGPT的概念与应用场景,可以作为chatGPT领域学习者的入门到进阶级课程。 【课程时长】 1天(6小时/天) 【课程对象】 理工科本科及以上&#xff0…...

nat地址转换

原理 将内网地址转换成外网地址 方式 掌握动态NAT的配置方法 掌握Easy IP的配置方法 掌握NAT Server的配置方法 实验 r1 r2 是内网 ar1 ip地址 ip add ip地址 掩码 ip route-static 0.0.0.0 0 192.168.1.254 默认网关 吓一跳网关 相等于设置了网关 ar2 …...

第12课 循环综合举例

文章目录 前言一、循环综合举例1. 质数判断问题2. 百人百砖问题3. 猴子吃桃问题4. 质因数分解问题5. 数字统计问题。 二、课后练习2. 末尾3位数问题3. 求自然常数e4. 数据统计问题5. 买苹果问题。6. 找5的倍数问题。 总结 前言 本课使用循环结构,介绍了以下问题的解…...

Tuxera NTFS for Mac2024免费Mac读写软件下载教程

在日常生活中,我们使用Mac时经常会遇到外部设备不能正常使用的情况,如:U盘、硬盘、软盘等等一系列存储设备,而这些设备的格式大多为NTFS,Mac系统对NTFS格式分区存在一定的兼容性问题,不能正常读写。 那么什…...

C++ 具名要求

此页面中列出的具名要求,是 C 标准的规范性文本中使用的具名要求,用于定义标准库的期待。 某些具名要求在 C20 中正在以概念语言特性进行形式化。在那之前,确保以满足这些要求的模板实参实例化标准库模板是程序员的重担。若不这么做&#xf…...

大创项目推荐 深度学习二维码识别

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 🔥 优质竞赛项目系列,今天…...

C++初阶——基础知识(函数重载与引用)

目录 1.命名冲突 2.命名空间 3.缺省参数 4.函数重载 1.函数重载的特点包括: 2.函数重载的好处包括: 3.引用 引用的特点包括 引用的主要用途包括 引用和指针 引用 指针 类域 命名空间域 局部域 全局域 第一个关键字 命名冲突 同一个项目之间冲…...

车载电子电器架构 —— 电子电气系统开发角色定义

车载电子电器架构 —— 电子电气系统开发角色定义 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 注:本文12000字,深度思考者进!!! 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的…...

最新Redis7哨兵模式(保姆级教学)

一定一定要把云服务器的防火墙打开一定要!!!!!!!!!否则不成功!!!!!!!!&…...

Redis原理及常见问题

高性能之道 单线程模型基于内存操作epoll多路复用模型高效的数据存储结构redis的单线程指的是数据处理使用的单线程,实际上它主要包含 IO线程:处理网络消息收发主线程:处理数据读写操作,包括事务、Lua脚本等持久化线程:执行RDB或AOF时,使用持久化线程处理,避免主线程的阻…...

nvm 的安装及使用 (Node版本管理器)

目录 1、nvm 介绍 2、nvm安装 3、nvm 使用 4、node官网可以查看node和npm对应版本 5、nvm安装指定版本node 6、安装cli脚手架 1、nvm 介绍 NVM 全称 node.js version management ,专门针对 node 版本进行管理的工具,通过它可以安装和切换不同版本的…...

【Yii2】数据库查询方法总结

目录 1.查找单个记录: 2.查找多个记录: 3.条件查询: 4.关联查询: 假设User模型有一个名为orders的多对一关联关系。 5.排序和分组: 6.数据操作: 7.事务处理: 8.命令查询: 9…...

区块链的三难困境是什么,如何解决?

人们需要保持社交、工作和睡眠之间的平衡,并且努力和谐相处。同样的概念也反映在区块链的三难困境中。 区块链三难困境是一个术语,指的是现有区块链的局限性:可扩展性、安全性和去中心化。这是一个存在了几十年的设计问题,其问题的…...

oCPC实践录 | oCPM的秘密

前言 笔者从这几方面介绍oCPM,并一一分析平台侧宣称的oCPM相比oCPC的优势,并解开其中的秘密。 1)什么是oCPM? 2)oCPC与oCPM的异同 3)平台宣称oCPM的优势 4)oCPM真正的秘密 5)oCPM下的点击率与…...

【Linux Shell学习笔记】Linux Shell的位置参数与函数

一、位置参数 位置参数,也被称之为位置变量,通过位置参数,可以在执行程序的时候,向程序传递数据 1.1 shell接收参数的方法 1.2 向shell传递参数的方法 二、函数 2.1 函数基础 2.1.1 函数简介 函数本质上就是一个代码块&#xf…...

缓存cache和缓冲buffer的区别

近期被这两个词汇困扰了,感觉有本质的区别,搜了一些资料,整理如下 计算机内部的几个部分图如下 缓存(cache) https://baike.baidu.com/item/%E7%BC%93%E5%AD%98 提到缓存(cache),就…...

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听,当对属性进行读取的时候,就会触发 getter,对属性进行设置的时候,就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…...

Eureka相关面试题及答案

1、什么是Eureka? Eureka是一个由Netflix开发的服务发现(Service Discovery)工具,它是Spring Cloud生态系统中的一个关键组件。服务发现是微服务架构中的一个重要概念,它允许服务实例在启动时注册自己,以便…...

想要学会JVM调优,先掌握JVM内存模型和JVM运行原理

1、前言 今天将和你一起探讨Java虚拟机(JVM)的性能调优。 JVM算是面试中的高频问题了,通常情况下总会有人问到:请你讲解下 JVM 的内存模型,JVM 的 性能调优做过? 2、为什么 JVM 在 Java 中如此重要 首…...

详解C语言入门程序:HelloWorld.c

#include <stdio.h> // 头文件&#xff0c;使用<>编译系统会在系统头文件目录搜索在C语言中&#xff0c;#include 是预处理指令&#xff0c;用于将指定的头文件内容插入到当前源文件中。这里的 <stdio.h> 是一个标准库头文件&#xff0c;其中包含了与输入输出…...

【elk-day01】es和kibana搭建及验证---Mac-Docker

Mac系统使用Docker下载搭建和验证eskibana Docker下载安装es安装es验证kibana安装kibana验证 Docker下载安装 Docker Desktop官网安装下载地址 说明一下为什么要安装desktop版本的docker&#xff0c;因为docker作为工具使用&#xff0c;我们需要的是开箱即用&#xff0c;没有必…...

探索 3D 图形处理的奥秘

最近一年多来&#xff0c;在 3Dfx、Intel 们的狂轰滥炸中&#xff0c;在 Quake、古墓丽影们的推波助澜下&#xff0c;三维图形已经成为计算机迷眼中的又一个热点。3D 世界到底是怎样的神奇&#xff0c;我们又是怎样享受它的乐趣呢&#xff1f;就让我们来一探究竟吧。 图形基础…...

R语言孟德尔随机化研究工具包(1)---friendly2MR

friendly2MR是孟德尔岁随机化研究中的一个重要补充工具&#xff0c;可以批量探索因素间的因果关系&#xff0c;以及快速填补缺失eaf的数据&#xff0c;但是存在细微差异需要注意。 remotes::install_github("xiechengyong123/friendly2MR") library(friendly2MR)lib…...

CentOS7下使用Docker安装Nacos

CentOS7下使用Docker安装Nacos 一、查看和nacos相关的镜像二、拉去镜像三、创建容器四、查看日志 一、查看和nacos相关的镜像 docker search nacos二、拉去镜像 拉取 nacos/nacos-server:1.2.0 镜像 docker pull nacos/nacos-server:1.2.0三、创建容器 docker run --env MO…...

用 Node.js 写一个爬虫

自己设计一个网站&#xff0c;然后去爬取别人家页面的数据来做一个自己的网站。哈哈哈&#xff0c;如果自己写着玩可能没啥事&#xff0c;但如果用这个网站来获利&#xff0c;你可能就要被寄律师函了&#xff0c;毕竟这有点‘刑’。这篇文章呢&#xff0c;就带大家爬取豆瓣TOP2…...

关于HTTPS

目录 什么是加密 对称加密 非对称加密 中间人攻击 引入证书 HTTPS是一个应用层的协议,是在HTTP协议的基础上引入了一个加密层. HTTP协议内容都是按照文本的方式明文传输,这就导致在传输的过程中出现一些被篡改的情况. 运营商劫持事件 未被劫持的效果,点击下载按钮,就会…...

安全配置审计概念、应用场景、常用基线及扫描工具

软件安装完成后都会有默认的配置&#xff0c;但默认配置仅保证了服务正常运行&#xff0c;却很少考虑到安全防护问题&#xff0c;攻击者往往利用这些默认配置产生的脆弱点发起攻击。虽然安全人员已经意识到正确配置软件的重要性&#xff0c;但面对复杂的业务系统和网络结构、网…...

【计算机毕业设计】python+django数码电子论坛系统设计与实现

本系统主要包括管理员和用户两个角色组成&#xff1b;主要包括&#xff1a;首页、个人中心、用户管理、分类管理、数码板块管理、数码评价管理、数码论坛管理、畅聊板块管理、系统管理等功能的管理系统。 后端&#xff1a;pythondjango 前端&#xff1a;vue.jselementui 框架&a…...

最优化方法Python计算:无约束优化应用——神经网络回归模型

人类大脑有数百亿个相互连接的神经元&#xff08;如下图(a)所示&#xff09;&#xff0c;这些神经元通过树突从其他神经元接收信息&#xff0c;在细胞体内综合、并变换信息&#xff0c;通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算&#xff1a;无约…...

Spring Data Redis对象缓存序列化问题

相信在项目中&#xff0c;你一定是经常使用 Redis &#xff0c;那么&#xff0c;你是怎么使用的呢&#xff1f;在使用时&#xff0c;有没有遇到同我一样&#xff0c;对象缓存序列化问题的呢&#xff1f;那么&#xff0c;你又是如何解决的呢&#xff1f; Redis 使用示例 添加依…...

自动驾驶代客泊车AVP巡航规划详细设计

目 录 巡航规划详细设计... 1 修改记录... 2 目 录... 3 1 背景... 5 2 系统环境... 6 2.1 巡航规划与其它模块联系... 6 2.2 巡航规划接口说明... 6 3 规划模块设计... 9 3.1 巡航规划架构图... 9 3.2 预处理... 10 3.3 Planner. 10 3.3.1 Geometry planner. 10 …...

亚马逊云科技 re:Invent 2023 产品体验:亚马逊云科技产品应用实践 国赛选手带你看 Elasticache Serverless

抛砖引玉 讲一下作者背景&#xff0c;曾经参加过国内世界技能大赛云计算的选拔&#xff0c;那么在竞赛中包含两类&#xff0c;一类是架构类竞赛&#xff0c;另一类就是 TroubleShooting 竞赛&#xff0c;对应的分别为亚马逊云科技 GameDay 和亚马逊云科技 Jam&#xff0c;想必…...

Flink on K8S集群搭建及StreamPark平台安装

1.环境准备 1.1 介绍 在使用 Flink&Spark 时发现从编程模型, 启动配置到运维管理都有很多可以抽象共用的地方, 目前streampark提供了一个flink一站式的流处理作业开发管理平台, 从流处理作业开发到上线全生命周期都做了支持, 是一个一站式的流出来计算平台。 未来spark开…...

SpringBoot如何优雅的处理免登录接口

在项目开发过程中&#xff0c;会有很多API接口不需要登录就能直接访问&#xff0c;比如公开数据查询之类的 ~ 常规处理方法基本是 使用拦截器或过滤器&#xff0c;拦截需要认证的请求路径。在拦截器中判断session或token信息&#xff0c;如果存在则放行&#xff0c;否则跳转到…...

元旦档首日票房超4.69亿,“下雪场尴尬”上热搜!

哇塞&#xff0c;元旦假期终于来啦&#xff01;&#x1f389;在这个喜庆的时刻&#xff0c;电影院也热闹非凡&#xff0c;据猫眼专业版数据显示&#xff0c;截至12月30日&#xff0c;2023年元旦档首日票房竟然超过了4.69亿&#xff01;这简直是个天文数字啊&#xff01;&#x…...

CentOS系统中设置IP地址的方式和存在的问题

在CentOS系统中设置IP地址通常涉及以下步骤&#xff1a; 打开网络接口配置文件&#xff1a; 使用文本编辑器&#xff08;如vi、nano或emacs&#xff09;打开 /etc/sysconfig/network-scripts/ifcfg-eth0 文件。这里的"eth0"是网卡的名称&#xff0c;如果你的系统中有…...

使用vmware,在ubuntu18.04中使用笔记本的摄像头

步骤1&#xff1a;在windows中检查相机状态 win10系统中&#xff0c;在左下的搜索栏&#xff0c;搜索“相机”&#xff0c;点击进入即可打开相机&#xff0c;并正常显示图像。 注意&#xff1a;如果相机连接到了虚拟机&#xff0c;则不能显示正常。 步骤2&#xff1a;在ubuntu…...

中间件系列 - Redis入门到实战(高级篇-分布式缓存)

前言 学习视频&#xff1a; 黑马程序员Redis入门到实战教程&#xff0c;深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 中间件系列 - Redis入门到实战 本内容仅用于个人学习笔记&#xff0c;如有侵扰&#xff0c;联系删除 学习目标 Redis持久化Redis主从…...

使用Visual Studio调试VisionPro脚本

使用Visual Studio调试VisionPro脚本 方法一 &#xff1a; 修改项目文件 csproj步骤&#xff1a; 方法二 &#xff1a; Visual Studio附加功能步骤&#xff1a; 方法一 &#xff1a; 修改项目文件 csproj 步骤&#xff1a; 开启VisionPro脚本调试功能 创建一个VisionPro程序…...

Ubuntu安装K8S的dashboard(管理页面)

原文网址&#xff1a;Ubuntu安装k8s的dashboard&#xff08;管理页面&#xff09;-CSDN博客 简介 本文介绍Ubuntu安装k8s的dashboard&#xff08;管理页面&#xff09;的方法。 Dashboard的作用有&#xff1a;便捷操作、监控、分析、概览。 相关网址 官网地址&#xff1a;…...

zookeeper之集群搭建

1. 集群角色 zookeeper集群下&#xff0c;有3种角色&#xff0c;分别是领导者(Leader)、跟随着(Follower)、观察者(Observer)。接下来我们分别看一下这三种角色的作用。 领导者(Leader)&#xff1a; 事务请求&#xff08;写操作&#xff09;的唯一调度者和处理者&#xff0c;保…...