当前位置: 首页 > news >正文

R_handbook_作图专题

ggplot基本作图





1 条形图

library(ggplot2)
ggplot(biopics) + geom_histogram(aes(x = year_release),binwidth=1,fill="gray")

2 堆砌柱状图

ggplot(biopics, aes(x=year_release)) +geom_bar(aes(fill=subject_sex))

3 堆砌比例柱状图

ggplot(biopics, aes(x=year_release)) +geom_bar(aes(fill=subject_sex),position = 'fill')

4 马赛克图

library(vcd)  
bio_ques_d <- biopics[,c(11,13)]
bio_ques_d$subject_race <- ifelse(is.na(bio_ques_d$subject_race ), "missing",ifelse(bio_ques_d$subject_race == "White","White", "nonwhite"))
biq_ques_d_table <- table(bio_ques_d$subject_race,bio_ques_d$subject_sex)
mosaicplot(biq_ques_d_table) 

5 双散点图

process_var <- c('v32', 'v33', 'v34', 'v35', 'v36', 'v37')
for (i in c(1:6)){var_clean <- paste(process_var[i],'clean',sep = '_')data[,var_clean] <- ifelse(data[,process_var[i]] == 'trust completely',1,ifelse(data[,process_var[i]] == 'trust somewhat',2,ifelse(data[,process_var[i]] == 'do not trust very much',3,ifelse(data[,process_var[i]] == 'do not trust at all',4,NA))))
}
data$intp.trust <- rowSums(data[,c(438:443)],na.rm = TRUE)
data$intp.trust <- data$intp.trust/6
ggplot(data[data$country == 'Iceland',], aes(x=confidence, y=intp.trust, colour=v225)) + geom_point()

6 双密度图

ggplot(data=start_s_country_data) +geom_density(aes(x=residual,color=as.factor(v225),))## 自定义图例的情况
ggplot(data=data) +geom_density(aes(x=LW, color = "LW")) + geom_density(aes(x=LP, color = "LP")) + labs(title="") + xlab("Value") + theme(legend.title=element_blank(),legend.position = c(0.9, 0.9))

ggplot(data ) +geom_point(aes(x = No.education, y=Median.year.of.schooling)) + geom_smooth(aes(x = No.education, y=Median.year.of.schooling), method = 'lm') + theme_classic() 

7 双折线图与多图展示

library(dplyr)
library(devtools)
library(cowplot)plot_grid(plot1,plot3,plot5,plot2,plot4,plot6,ncol=3,nrow=2)
bio_ques_f <- biopics[,c(4,11,13)]
bio_ques_f$subject_race <- ifelse(is.na(bio_ques_f$subject_race ), "missing",ifelse(bio_ques_f$subject_race == "White","White", "nonwhite"))planes <- group_by(bio_ques_f, year_release, subject_race, subject_sex)
bio_ques_f_summary <- summarise(planes, count = n())
planes <- group_by(bio_ques_f,year_release)
bio_ques_f_year<- summarise(planes,count_year = n())bio_ques_f_summary <- left_join(bio_ques_f_summary,bio_ques_f_year,c("year_release" = "year_release"))
bio_ques_f_summary$prop <- bio_ques_f_summary$count / bio_ques_f_summary$count_yeardata_missing_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'missing') & (subject_sex == 'Female')))
data_missing_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'missing') & (subject_sex == 'Male')))
data_nonwhite_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'nonwhite') & (subject_sex == 'Female')))
data_nonwhite_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'nonwhite') & (subject_sex == 'Male')))
data_white_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'White') & (subject_sex == 'Female')))
data_white_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'White') & (subject_sex == 'Male')))plot1 <- ggplot(data_missing_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="missing and female")
plot2 <- ggplot(data_missing_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="missing and male")
plot3 <- ggplot(data_nonwhite_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="nonwhite and female")
plot4 <- ggplot(data_nonwhite_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="nonwhite and male")
plot5 <- ggplot(data_white_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="white and female")
plot6 <- ggplot(data_white_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="white and male")plot_grid(plot1,plot3,plot5,plot2,plot4,plot6,ncol=3,nrow=2)

ggplot作图美化

1 标题居中

ggplot(data_selected, aes(x=AREA.NAME)) +geom_bar(aes(fill=year)) + labs(title = 'The bar plot of AREA.NAME') +theme_classic() + theme(plot.title = element_text(hjust = 0.5))

2 X轴标签旋转

ggplot(data_selected, aes(x=AREA.NAME)) +geom_bar(aes(fill=year)) + labs(title = 'The bar plot of AREA.NAME') +theme_classic() + theme(plot.title = element_text(hjust = 0.5)) + theme(axis.text.x=element_text(face="bold",size=8,angle=270,color="black"))

3 变更label名

ggplot(data=data) + geom_line(aes(x=index,y=data,group=line,color=result)) + theme_classic() + scale_colour_manual(values=c("red", "blue"), labels=c("lose", "win")) 

ggforce

ggforce能对绘制的图增加聚类图层,包括圆形、椭圆形、方形能多种。

North_latitude <- c(47.5, 52.3, 54.8, 48.4, 54.2,54.8, 54.4, 48.8, 50.5, 52.7,46.5, 46.9, 45.1, 45.9, 50.7,48.5, 48.3, 48.1, 48.8, 49.4)
Elevation <- c(2, 1, 1, 2, 1,1, 1, 2, 2, 1,2, 2, 2, 2, 1,2, 2, 1, 1, 1)
Temperature <- c(39.27, 39.00, 38.35, 37.58, 39.38,39.05, 39.65, 38.66, 37.97, 40.10,37.05, 37.19, 36.92, 36.70, 38.01,37.26, 36.97, 36.95, 37.68, 37.55)
data <- data.frame(North_latitude = North_latitude,Elevation = Elevation,Temperature = Temperature)
data$Elevation <- as.factor(data$Elevation)
dim(data)

library(ggplot2)
library(ggforce)
ggplot(data=data,aes(x=North_latitude,y=Temperature,color=Elevation))+
geom_point()+
geom_mark_circle(aes(fill=Elevation),alpha=0.4)+
theme_classic() +
labs(title = 'The relationship between latitude and temperature') +theme(plot.title = element_text(hjust = 0.5))

地理位置图

library(ggplot2)
library(viridis)
library(cvTools)
library(dplyr)data <- read.csv("Reef_Check_with_cortad_variables_with_annual_rate_of_SST_change.csv")world_map <- map_data("world")
ggplot() + geom_polygon(data =world_map, aes(x=long, y = lat, group = group), fill="grey", alpha=0.3) +geom_point(data =data, alpha = 0.2, aes(y=Latitude.Degrees, x= Longitude.Degrees , size=Average_bleaching, color=Average_bleaching))  + scale_colour_viridis() + theme_minimal()

igraph网络图

library(igraph)webforum_graph <- webforum[webforum$Date > as.Date("2010-12-01"), ]
webforum_graph <- webforum_graph[webforum_graph$Date < as.Date("2010-12-31"), ]# generate node dataframe
AuthorID <- unique(as.numeric(webforum_graph$AuthorID))
ThreadID <- unique(as.numeric(webforum_graph$ThreadID))
name <- c(AuthorID, ThreadID)
type <- c(rep("Author", length(AuthorID)) , rep("Thread", length(ThreadID)))
webforum_node <- data.frame(name = name, type = type)# generate edge dataframe
webforum_graph <- webforum_graph[,c("AuthorID", "ThreadID")]# generate graph dataframe
graph <- graph_from_data_frame(webforum_graph, directed = FALSE, vertices=webforum_node) set.seed(30208289)plot(graph,  layout= layout.fruchterman.reingold,  vertex.size=10,   vertex.shape="circle",    vertex.color=ifelse(V(graph)$type == "Thread", "red", "blue"),vertex.label=NULL, 	 vertex.label.cex=0.7,    vertex.label.color='black',  vertex.label.dist=0,edge.arrow.size=0.2, edge.width = 0.5, edge.label=V(graph)$year, edge.label.cex=0.5,edge.color="black") 

相关文章:

R_handbook_作图专题

ggplot基本作图 1 条形图 library(ggplot2) ggplot(biopics) geom_histogram(aes(x year_release),binwidth1,fill"gray") 2 堆砌柱状图 ggplot(biopics, aes(xyear_release)) geom_bar(aes(fillsubject_sex)) 3 堆砌比例柱状图 ggplot(biopics, aes(xyear_rele…...

关于Python里xlwings库对Excel表格的操作(二十五)

这篇小笔记主要记录如何【如何使用xlwings库的“Chart”类创建一个新图表】。 前面的小笔记已整理成目录&#xff0c;可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 &#xff08;1&#xff09;如何安装导入xlwings库&#xff1b; &#xff08;2…...

2024 年软件工程将如何发展

软件开发目前正在经历一场深刻的变革&#xff0c;其特点是先进自动化的悄然但显着的激增。这一即将发生的转变有望以前所未有的规模简化高质量应用程序的创建和部署。 它不是单一技术引领这一演变&#xff0c;而是创新的融合。从人工智能(AI) 和数字孪生技术&#xff0c;到植根…...

【Git】git基础

Git 命令 git config --globle user.name ""git config --globle user.email ""git config -lgit config --globle --unset []git add []git commit -m ""]git log//当行且美观 git log --prettyoneline//以图形化和简短的方式 git log --grap…...

Linux中账号和权限管理

目录 一.用户账号和组账号&#xff1a; 1.用户账号类型&#xff1a; 2.组账号类型&#xff1a; 3.系统区别用户的方法 &#xff1a; 4.用户账号文件&#xff1a; 二.Linux中账户相关命令&#xff1a; 1.useradd&#xff1a; 2.passwd&#xff1a; 3.usermod&#xff1a…...

Resnet BatchNormalization 迁移学习

时间&#xff1a;2015 网络中的亮点&#xff1a; 超深的网络结构&#xff08;突破1000层&#xff09;提出residual模块使用Batch Normalization加速训练&#xff08;丢弃dropout&#xff09; 层数越深效果越好&#xff1f; 是什么样的原因导致更深的网络导致的训练效果更差呢…...

Unity检测地面坡度丨人物上坡检测

Unity检测地面坡度 前言使用 代码 前言 此功能为&#xff0c;人物在爬坡等功能时可以检测地面坡度从而完成向某个方向给力或者完成其他操作 使用 其中我们创建了脚本GradeCalculation&#xff0c;把脚本挂载到人物上即可&#xff0c;或者有其他的使用方式&#xff0c;可自行…...

SASS循环

<template><div><button class"btn type-1">默认按钮</button><button class"type-2">主要按钮</button><button class"type-3">成功按钮</button><button class"type-4">信息…...

Java超高精度无线定位技术--UWB (超宽带)人员定位系统源码

UWB室内定位技术是一种全新的、与传统通信技术有极大差异的通信新技术。它不需要使用传统通信体制中的载波&#xff0c;而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据&#xff0c;从而具有GHz量级的带宽。 UWB&#xff08;超宽带&#xff09;高精度定位系统是一…...

系列十一、解压文件到指定目录

一、解压文件到指定目录 1.1、需求 Linux的/opt目录有一个文件zookeeper-3.4.11.tar.gz&#xff0c;我现在想把该文件解压至/usr/local/目录&#xff0c;那么应该怎么做呢&#xff1f; 语法&#xff1a;tar -zxvf xxx -C /usr/local/ tar -zxvf zookeeper-3.4.11.tar.gz -C /u…...

PHP Swoole Client

PHP常用socket创建TCP连接&#xff0c;使用CURL创建HTTP连接&#xff0c;为了简化操作&#xff0c;Swoole提供了Client类用于实现客户端功能&#xff0c;并增加了异步非阻塞模式&#xff0c;让用户在客户端也能使用事件循环。 作为客户端使用&#xff0c;Swoole Client可以在F…...

《QDebug 2023年12月》

一、Qt Widgets 问题交流 1. 二、Qt Quick 问题交流 1.Q_REVISION 标记的信号槽或者 REVISION 标记的属性&#xff0c;在子类中访问 Q_REVISION 是 Qt 用来做版本控制的一个宏。以 QQuickWindow 为例&#xff0c;继承后去访问 REVISION 标记的 opacity 属性或者 Q_REVISION…...

sklearn 中matplotlib编制图表

代码 # 导入pandas库&#xff0c;并为其设置别名pd import pandas as pd import matplotlib.pyplot as plt# 使用pandas的read_csv函数读取名为iris.csv的文件&#xff0c;将数据存储在iris_data变量中 iris_data pd.read_csv(data/iris.txt,sep\t)# 使用groupby方法按照&quo…...

【Docker-Dev】Mac M2 搭建docker的redis环境

Redis的dev环境docker搭建 1、前言2、官方文档重点信息提取2.1、创建redis实例2.2、使用自己的redis.conf文件。 3、单机版redis搭建4、redis集群版4.1、一些验证4.2、一些问题 结语 1、前言 本文主要针对M2下&#xff0c;相应进行开发环境搭建&#xff0c;然后做一个文档记录…...

docker +gitee+ jenkins +maven项目 (一)

jenkins环境和插件配置 文章目录 jenkins环境和插件配置前言一、环境版本二、jenkins插件三、环境安装总结 前言 现在基本都是走自动化运维&#xff0c;想到用docker 来部署jenkins &#xff0c;然后jenkins来部署java代码&#xff0c;做到了开箱即用&#xff0c;自动发布代码…...

IDEA 开发中常用的快捷键

目录 Ctrl 的快捷键 Alt 的快捷键 Shift 的快捷键 Ctrl Alt 的快捷键 Ctrl Shift 的快捷键 其他的快捷键 Ctrl 的快捷键 Ctrl F 在当前文件进行文本查找 &#xff08;必备&#xff09; Ctrl R 在当前文件进行文本替换 &#xff08;必备&#xff09; Ctrl Z 撤…...

Ubuntu Desktop 死机处理

Ubuntu Desktop 死机处理 当 Ubuntu Desktop 死机时&#xff0c;除了长按电源键重启&#xff0c;还可以使用如下两种方式处理。 方式1&#xff1a;ctrlaltFn 使用 ctrl alt F3~F6: 切换到其他 tty 命令行。 执行 top 命令查看资源占用最多的进程&#xff0c;然后使用 kill…...

Hermite矩阵

Hermite矩阵 文章目录 Hermite矩阵一、正规矩阵【定义】A^H^矩阵【定理】 A^H^的运算性质【定义】正规矩阵、特殊的正规矩阵【定理】与正规矩阵酉相似的矩阵也是正规矩阵【定理】正规的上(下)三角矩阵必为对角矩阵【定义】复向量的内积【定理】Schmitt正交化 二、酉矩阵&#x…...

HTML 实操试题(二)

创建一个简单的HTML文档&#xff1a; 包含<!DOCTYPE html>声明。包含<html>标签&#xff0c;并设置lang属性为英语。包含<head>标签&#xff0c;其中包含<meta charset"UTF-8">和一个自定义的页面标题。包含<body>标签&#xff0c;其…...

MongoDB 面试题

MongoDB 面试题 1. 什么是MongoDB&#xff1f; MongoDB是一种非关系型数据库&#xff0c;被广泛用于大型数据存储和分布式系统的构建。MongoDB支持的数据模型比传统的关系型数据库更加灵活&#xff0c;支持动态查询和索引&#xff0c;也支持BSON格式的数据存储&#xff0c;这…...

LeetCode 1154. 一年中的第几天:2023年最后一道每日一题

【LetMeFly】1154.一年中的第几天&#xff1a;2023年最后一道每日一题 力扣题目链接&#xff1a;https://leetcode.cn/problems/day-of-the-year/ 给你一个字符串 date &#xff0c;按 YYYY-MM-DD 格式表示一个 现行公元纪年法 日期。返回该日期是当年的第几天。 示例 1&…...

《深入理解JAVA虚拟机笔记》OutOfMemoryError 异常

在《Java 虚拟机规范》的规定里&#xff0c;除了程序计数器外&#xff0c;虚拟机内存的其他几个运行时区域都有发生 OutOfMemoryError &#xff08;下文称 OOM&#xff09;异常的可能。 Java堆溢出 Java 堆用于储存对象实例&#xff0c;我们只要不断地创建对象&#xff0c;并…...

R306指纹识别模块指令系统

一&#xff1a;指令集 1. GR_GetImage 指令代码&#xff1a;01H 功能&#xff1a;从传感器上读入图像存于图像缓冲区 2. GR_GenChar 指令代码&#xff1a;02H 功能&#xff1a;根据原始图像生成指纹特征存于 CharBuffer1 或 CharBuffer2 3. GR_Match 指令代码&#xff…...

redis的搭建及应用(三)-Redis主从配置

Redis主从配置 为提升Redis的高可用性&#xff0c;需要搭建多个Redis集群以保证高可用性。常见搭建方式有&#xff1a;主从&#xff0c;哨兵集群等&#xff0c;本节我们搭建一主二从的多Redis架构。 redis主从安装1主2从的方式配置&#xff0c;以端口号为redis的主从文件夹。 主…...

Java学习,一文掌握Java之SpringBoot框架学习文集(1)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…...

javaWeb学生信息管理系统2

一、学生信息管理系统SIMS 一款基于纯Servlet技术开发的学生信息管理系统&#xff08;SIMS&#xff09;&#xff0c;在设计中没有采用SpringMVC和Spring Boot等框架。系统完全依赖于Servlet来处理HTTP请求和管理学生信息&#xff0c;实现了信息的有效存储、检索和更新&#xf…...

Linux Shell 019-文本行处理工具sed

Linux Shell 019-文本行处理工具sed 本节关键字&#xff1a;Linux、Bash Shell、文本行处理工具 相关指令&#xff1a;sed、 sed介绍 sed是Stream Editor&#xff08;流编辑器&#xff09;的缩写&#xff0c;简称流编辑器&#xff1b;用来处理文件的。sed是一行一行读取文件…...

Ubuntu中fdisk磁盘分区并挂载、扩容逻辑卷

Ubuntu中fdisk磁盘分区并挂载、扩容逻辑卷 一&#xff1a;fdisk磁盘分区并挂载1.查看磁盘分区信息2.分区3.强制系统重新读取分区(避免重启系统)4.格式化分区5.创建挂载目录6.设置开机自动挂载&#xff1a;7.验证并自动挂载(执行了该命令不需要重启系统)8.查看挂载007.异常情况处…...

【leetcode】栈与队列总结

本文内容来自于代码随想录 栈 用栈实现队列 两个栈实现队列。思路&#xff1a;两个栈分别表示入栈和出栈。 入队&#xff1a;直接入栈出队&#xff1a; a. 出栈为空&#xff0c;先把入栈中的元素全部放到出栈中&#xff08;相当于反过来&#xff0c;这样在出栈的时候先进的元…...

[EFI]HP Spectre 13 v102nl电脑 Hackintosh 黑苹果efi引导文件

硬件型号驱动情况主板 HP Spectre 13 v102nl 处理器Intel Core i7-7500U (7th gen - Kaby Lake)已驱动内存8 GB LPDDR3-1866 SDRAM已驱动硬盘512 GB Toshiba NVMe™ M.2 SSD已驱动显卡Intel HD Graphics 620已驱动声卡Conexant CX8200 (0x2008)已驱动网卡I1211 Gigabit Etherne…...