当前位置: 首页 > news >正文

国科大图像处理2023速通期末——汇总2017-2019

国科大2023.12.28图像处理0854期末重点
图像处理 王伟强 作业 课件 资料

一、填空

  1. 一个阴极射线管它的输入与输出满足 s = r 2 s=r^{2} s=r2,这将使得显示系统产生比希望的效果更暗的图像,此时伽马校正通常在信号进入显示器前被进行预处理,令p与q表示伽马校正的输入与输出,则p与q之间的映射关系式表示为: q = p 1 2 q=p^{\frac{1}{2}} q=p21
  2. 卷积是一种图像处理领域最有影响力的计算之一,对于一幅输入图像f(x,y), 我们可以通过卷积运算产生一幅新的图像g(x,y),若g(x,y)=0.1f(x+1,y)+0.2f(x-1y)+0.3f(x,y)+0.2f(x,y-1)+0.2f(x,y+1)这里x表示行标,y表示图像中像素位置的列坐标,请用一个3X3的矩阵来表示这个卷积核
  3. 我们处理一幅图像可以在空域中通过线性滤波运算进行处理,也可以在频域内对它进行处理达到同样的效果。该事实的理论基础就是基于傅立叶变换的卷积定理,若我们用f(x,y),g(x,y)表示图像与线性滤波核,它们对应的傅立叶变换分别用F(u,v),G(u,v)表示则该定理可形式化描述为f(x,y)∗g(x,y)⟷F(u,v)×G(u,v)
  4. 拉普拉斯波器的频域表示的函数形式为 H ( u , v ) = − 4 π 2 ( u 2 + v 2 ) H(u,v)=-4\pi ^{2}(u^{2}+v^{2}) H(u,v)=4π2(u2+v2)
  5. 假设我们有一个在0-1区间的均匀分布随机数发生器w,若已知一个满足瑞利分布的随机变量累加分布函数CDF是 F z ( z ) = { 1 − e x p ( − ( z − a ) 2 b ) , z ≥ a 0 , z < a F_{z}(z)=\begin{cases} 1-\frac{exp(-(z-a)^{2}}{b}),z\ge a\\ 0,z<a \end{cases} Fz(z)={1bexp((za)2),za0,z<a,则基于w的瑞利分布的随机数发生器z的方程为 z = a + − b l n ( 1 − w ) z=a+\sqrt{-bln(1-w)} z=a+bln(1w)
  6. 若高斯低通滤波器在频域中的表示为 H ( u , v ) = e − D 2 ( u , v ) 2 D 0 2 H(u,v)=e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} H(u,v)=e2D02D2(u,v)则对应的高斯高通滤波器在频域中的表示为 H h ( u , v ) = 1 − e − D 2 ( u , v ) 2 D 0 2 H_{h}(u,v)=1-e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} Hh(u,v)=1e2D02D2(u,v)
  7. Weiner 滤波的计算方法为 F ( u , v ) = [ 1 H ( u , v ) ⋅ ∣ H ( u , v ) ∣ 2 ∣ H ( u , v ) ∣ 2 + S η ( x , y ) S f ( x , y ) ] G ( u , v ) ) F(u,v)=[\frac{1}{H(u,v)}·\frac{|H(u,v)|^{2}}{|H(u,v)|^{2}+\frac{S_{\eta }(x,y)}{S_{f}(x,y)}}]G(u,v)) F(u,v)=[H(u,v)1H(u,v)2+Sf(x,y)Sη(x,y)H(u,v)2]G(u,v))其中 S η ( x , y ) S_{\eta }(x,y) Sη(x,y)代表噪声功率谱密度,H(u,v)代表退化函数
  8. YCbCr中的Y代表明度,Cb与Cr代表蓝色与红色的浓度偏移,HSV中的H代表色调,s代表饱和度

二、选择

  1. 采用对比度拉伸是实现灰度图像的增强的一种重要思路,而分段线性变换函数是一种常被采用的技术。针对某一段输入灰度范围,若你想扩大输出灰度的动态范围,所构造的那一段线性映射函数的斜率k应满足:(A)
    A.k>1
    B.k=1
    C.k<1
    D.取任何值都可以

  2. 若一幅图像中存在椒盐噪声,下面哪种滤波器可选择来去除它们:(D)
    A.算术均值滤波器
    B.反调和滤波器
    C.拉普拉斯滤波器
    D.中值滤波器

  3. 通过卷积运算对图像进行各种目的的滤波是图像处理的重要内容。对于离散的两个一维信号[3,5,6],g=[1,-1],对应的卷积结果是(A)
    A.[3,2,1,-6]
    B.[2.1]
    C.[-3,-2-1,6]
    D.[-2,-1]

  4. 高斯低通滤波器 H ( u , v ) = e − D 2 ( u , v ) 2 D 0 2 H(u,v)=e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} H(u,v)=e2D02D2(u,v)中存在一个参数 D 0 D_{0} D0,对于一幅中年妇女面部特写图像,若发现采用 D 0 = 100 D_{0}=100 D0=100时,去除该妇女眼部的皱纹不彻底,则应该:(A)
    A.适当减小 D 0 D_{0} D0
    B.适当加大 D 0 D_{0} D0
    C.保持 D 0 D_{0} D0不变
    D.前面选项都不对

  5. 对于一个具有正交性质的完美重建滤波器组,若它的滤波器之间具有如下的关系:(B)
    g 1 ( n ) = ( − 1 ) n g 0 ( 2 K − 1 − n ) , h 1 ( n ) = g 1 ( 2 K − 1 − n ) , i = 0 , 1 g_{1}(n)=(-1)^{n}g_{0}(2K-1-n),h_{1}(n)=g_{1}(2K-1-n),i=0,1 g1(n)=(1)ng0(2K1n)h1(n)=g1(2K1n),i=0,1

    A. ( − 1 ) n h 0 ( 2 K − 1 − n ) (-1)^{n}h_{0}(2K-1-n) (1)nh0(2K1n)
    B. ( − 1 ) n + 1 h 0 ( 2 K − 1 − n ) (-1)^{n+1}h_{0}(2K-1-n) (1)n+1h0(2K1n)
    C. ( − 1 ) n h 0 ( n ) (-1)^{n}h_{0}(n) (1)nh0(n)
    D. ( − 1 ) n + 1 h 0 ( n ) (-1)^{n+1}h_{0}(n) (1)n+1h0(n)

  6. 信息论是信息压缩的理论基础,而互信息是信息论中一个非常重要的概念,信源z与信道输出v之间互信息I(z,v)的意义为©
    A.信源z与信道输出v间的平均信息量
    B.观察单一信道输出符号时接收到的平均信息
    C.观测到输出v后信源符号的平均信息量
    D信道可靠传输信息的最大传送率

三、判断

  1. 对一幅数字图像进行一次直方图均衡处理后,通常不会产生非常绝对平的直方图。即便我们对处理后的图像再进行一次直方图处理,理论上也不会产生任何效果。(√)
  2. 拉普拉斯滤波器与统计排序滤波器均不是一种卷积运算。(×)
  3. 卷积运算具有交换性与结合性。(√)
  4. 低通高阶巴特沃斯滤波器存在振铃效应,而低通高斯滤波器不存在振铃效应。(√)
  5. 我们可以用阶数Q<0的逆谐波均值滤波器来去除盐噪声。(√)
  6. 给定一幅图像,若我们能准确估计噪声的均值与方差,则可以知道噪声的能量(所有像素位置的噪声强度的平方和)。(√)
  7. 在图像编码中,涉及信源编码与信道编码,两者都是为了实现信息的压缩表示。(×)
  8. 对于一个事件,它发生的概率越小,它的熵越大。(√)
  9. 若一幅图像中含有一些噪声点或干扰性微小结构,可采用形态处理中的开操作作为一种处理段来去除它。(√)

四、简答

1. 简述什么是线性移不变系统

答:线性移不变性系统(Linear Shift-Invariant System,简称LSI系统)是一种特殊的系统,它对输入图像的处理满足线性和移不变性两个条件。

  • 线性:系统对输入图像的处理是线性的,即如果输入图像是两个图像的线性组合,那么输出图像也是这两个图像经过系统处理后的输出的相同线性组合。数学上表示为,如果 f 1 ( x , y ) f_{1}(x,y) f1(x,y) f 2 ( x , y ) f_{2}(x,y) f2(x,y)是两个输入图像,α和β是任意常数,那么系统的输出满足: S ( α f 1 + β f 2 ) = α S ( f 1 ) + β S ( f 2 ) S(αf_{1}+βf_{2})=αS(f_{1})+βS(f_{2}) S(αf1+βf2)=αS(f1)+βS(f2)
  • 移不变性:系统对输入图像的处理是移不变的,即如果输入图像在空间域内平移,那么输出图像也会相应地平移,而不会改变其它特性。数学上表示为,如果f(x,y)是输入图像, ( x 0 , y 0 ) (x_{0},y_{0}) (x0y0)是平移量,那么系统的输出满足: H [ f ( x , y ) ] = g ( x , y ) , H [ f ( x − x 0 , y − y 0 ) ] = g ( x − x 0 , y − y 0 ) H[f(x,y)]=g(x,y),H[f(x-x_{0},y-y_{0})]=g(x-x_{0},y-y_{0}) H[f(x,y)]=g(x,y)H[f(xx0,yy0)]=g(xx0,yy0)

线性移不变性系统的一个重要特性是,它们可以通过卷积运算来描述。对于任何LSI系统,都存在一个称为系统冲激响应的函数 h ( x , y ) h(x,y) h(x,y),使得系统对任何输入图像 f ( x , y ) f(x,y) f(x,y) 的输出 g ( x , y ) g(x,y) g(x,y)可以表示为 f ( x , y ) f(x,y) f(x,y) h ( x , y ) h(x,y) h(x,y)的卷积: g ( x , y ) = f ( x , y ) ∗ h ( x , y ) g(x,y)=f(x,y)\ast h(x,y) g(x,y)=f(x,y)h(x,y)

2. 观察如下所示图像。右边的图像这样得到:

(a)在原始图像左边乘以 ( − 1 ) x + y (-1)^{x+y} (1)x+y
(b) 计算离散傅里叶变换(DFT);
© 对变换取复共轭;
(d) 计算傅里叶反变换;
(e) 结果的实部再乘以 ( − 1 ) x + y (-1)^{x+y} (1)x+y
(用数学方法解释为什么会产生右图的效果)。DIP旋转了180度

假设原图像为 f 1 ( x , y ) f_{1}(x,y) f1(x,y)

  • 经过a操作变为 ( − 1 ) x + y f 1 ( x , y ) (-1)^{x+y}f_{1}(x,y) (1)x+yf1(x,y)
  • 经过b操作离散傅里叶变换变为 F ( u , v ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e − j 2 π ( u x M + u y N ) F(u,v)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{-j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}} F(u,v)=MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)
  • 通过c操作,根据傅里叶变换性值
  • F ∗ ( u , v ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e j 2 π ( u x M + u y N ) F^\ast (u,v)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}} F(u,v)=MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)
  • 通过d操作得傅里叶反变换变为
  • I D F T ( F ∗ ( u , v ) ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 [ 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e j 2 π ( u x M + u y N ) ] e j 2 π ( u x M + u y N ) IDFT(F^\ast (u,v))=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}[\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}}]e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)} IDFT(F(u,v))=MN1u=0M1v=0N1[MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)]ej2π(Mux+Nuy)实部为 ( − 1 ) x + y f ( − x , − y ) (-1)^{x+y}f(-x,-y) (1)x+yf(x,y)
  • e操作后变为 ( − 1 ) x + y ( − 1 ) x + y f ( − x , − y ) = f ( − x , − y ) (-1)^{x+y}(-1)^{x+y}f(-x,-y)=f(-x,-y) (1)x+y(1)x+yf(x,y)=f(x,y)
    效果原图像旋转180°

3. 描述如何构建高斯金字塔与拉普拉斯金字塔

  • 高斯金字塔建立:

    1. 生成初始图像(最底层): 将原始图像 f ( x , y ) f(x,y) f(x,y)作为金字塔的第一层。
    2. 进行下采样: 对当前层的图像进行高斯滤波,然后进行下采样,即去除一些行和列,以生成下一层的图像。下采样可以使用像素平均值或其他插值技术。下采样的目的是减小图像的尺寸。
    3. 重复步骤2: 重复进行高斯滤波和下采样,直到达到金字塔的顶层。每一层的图像尺寸都比前一层的尺寸小。
  • 拉普拉斯金字塔建立:

    1. 生成高斯金字塔: 使用上述方法生成高斯金字塔。
    2. 构建拉普拉斯金字塔: 拉普拉斯金字塔的每一层都是由对应的高斯金字塔层与该层的上一层进行差分得到的。即,拉普拉斯金字塔的每一层是由高斯金字塔的对应层减去该层的上一层。对于每一层i,拉普拉斯金字塔的图像 L i L_{i} Li可以用以下公式表示: L i = G i − e x p a n e d ( G i + 1 ) L_{i}=G_{i}-expaned(G_{i+1}) Li=Giexpaned(Gi+1)
      其中, G i G_{i} Gi是高斯金字塔的第 i 层,expaned是上采样操作。这样,我们得到的拉普拉斯金字塔的第一层是高斯金字塔的最顶层,最后一层是高斯金字塔的最底层

4. 每一个小波的尺度函数都遵循Mallat提出的多分辨率分析的4个基本要求,请描述这4个基本要求的内容

答:

  1. 尺度函数对它的整数平移对应的函数是正交的
    - 哈尔函数被称为是紧支撑的,意味着除了称为支撑域有限区间外,函数值都为0
    - 必须注意,当尺度函数的支撑域大于1时,整数平移函数间的正交性将变得更加难于被满足
  2. 低尺度尺度函数张成的子空间包含于高尺度尺度函数张成的子空间内
    V − ∞ ⊂ . . . ⊂ V − 1 ⊂ V − 0 ⊂ V 1 ⊂ . . . ⊂ V + ∞ V_{-∞} \subset ... \subset V_{-1}\subset V_{-0}\subset V_{1}\subset ...\subset V_{+∞} V...V1V0V1...V+
  3. 唯一包含在 V j V_{j} Vj所有中的函数是f(x)=0
    V − ∞ = 0 V_{-∞}=0 V=0
  4. 任何函数都可以以任意精度表示 V ∞ = L 2 ( R ) V_{∞}=L^{2}(R) V=L2(R)

5. 傅里叶变换的6个性质

  • 空域频移性 F [ f ( x − x 0 , y − y 0 ) ] = F ( u , v ) e − j 2 π ( u x 0 M + v y 0 N ) \mathscr{F}[f(x-x_{0},y-y_{0})]=F(u,v)e^{-j2\pi (\frac{ux_{0}}{M}+\frac{vy_{0}}{N})} F[f(xx0,yy0)]=F(u,v)ej2π(Mux0+Nvy0)
  • 时域频移性 F [ f ( x , y ) e − j 2 π ( u x 0 M + v y 0 N ) ] = F ( u − u 0 , v − v 0 ) \mathscr{F}[f(x,y)e^{-j2\pi (\frac{ux_{0}}{M}+\frac{vy_{0}}{N})}]=F(u-u_{0},v-v_{0}) F[f(x,y)ej2π(Mux0+Nvy0)]=F(uu0,vv0)
    - F [ f ( x , y ) ( − 1 ) x + y ] = F ( u − M 2 , v − N 2 ) \mathscr{F}[f(x,y)(-1)^{x+y}]=F(u-\frac{M}{2},v-\frac{N}{2}) F[f(x,y)(1)x+y]=F(u2M,v2N)
  • 平均和对称
    • 平均 F ( 0 , 0 ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 f ( x , y ) F(0,0)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{f(x,y)} F(0,0)=MN1u=0M1v=0N1f(x,y)
    • 共轭 F ( u , v ) = F ∗ ( − u , − v ) F(u,v)=F^{\ast}(-u,-v) F(u,v)=F(u,v)
    • 对称 ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ |F(u,v)|=|F(-u,-v)| F(u,v)=F(u,v)
  • 可分离性 F ( u , v ) = F f ( x , y ) = ∑ y [ ∑ x f ( x , y ) e − j 2 π x u M ] e − j 2 π y v N = ∑ y F ( u , y ) e − j 2 π y v N F(u,v)=\mathscr{F}f(x,y)=\sum_{y}[\sum_{x}{f(x,y)e^{-j2\pi \frac{xu}{M}}}]e^{-j2\pi \frac{yv}{N}}=\sum_{y}F(u,y)e^{-j2\pi \frac{yv}{N}} F(u,v)=Ff(x,y)=y[xf(x,y)ej2πMxu]ej2πNyv=yF(u,y)ej2πNyv
  • 旋转性 x = r c o s θ , y = r s i n θ , u = ω c o s φ , v = ω s i n φ x=rcosθ ,y=rsinθ , u=\omega cos\varphi , v=\omega sin\varphi x=rcosθy=rsinθ,u=ωcosφv=ωsinφ
    f ( r , θ + θ 0 ) ⇔ F ( ω , φ + θ 0 ) f(r,θ+θ_{0})\Leftrightarrow F(\omega,\varphi+θ_{0}) f(r,θ+θ0)F(ω,φ+θ0)
  • 周期性f(x,y)=f(x+M,y)=f(x,y+N)=f(x+M,y+N)
    F(u,v)=F(u+M,v)=F(u,v+N)=F(u+M,v+N)
  • 线性 F ( a f ( x , y ) + b g ( x , y ) ) = a F ( f ( x , y ) ) + b F ( g ( x , y ) ) \mathscr{F} (af(x,y)+bg(x,y))=a\mathscr{F} (f(x,y))+b\mathscr{F}(g(x,y)) F(af(x,y)+bg(x,y))=aF(f(x,y))+bF(g(x,y))
  • 微分性
    在这里插入图片描述

6. 请用集合的语言描述形态学中的腐蚀与膨胀,并用进一步用数学公式定义开运算与闭运算。

假设 A 是一个图像集合,并且 B 是一个称为结构元素的集合。

  • 腐蚀(Erosion):
    腐蚀操作可以看作是将结构元素 B 从图像 A 中滑动,只要 B 完全覆盖A 的某一部分,那么该部分就被保留,否则就被去除。
    数学表述为: A ⊖ B = { z ∣ ( B ) z ⊆ A } A⊖B=\left \{ z∣(B)_{z}\subseteq A \right \} AB={z(B)zA}
    ⊖ 表示腐蚀操作, ( B ) z (B)_{z} (B)z表示将结构元素 B 的原点放在 z 处。

  • 膨胀(Dilation):
    膨胀操作可以看作是将结构元素 B 从图像 A 中滑动,只要B 与 A 有交集,那么该部分就被保留。
    数学表述为: A ⊕ B = { z ∣ ( B ) z ⊆ A } A⊕B=\left \{ z∣(B)_{z}\subseteq A \right \} AB={z(B)zA}⊕ 表示膨胀操作

  • 开运算(Opening):
    开运算首先对图像进行腐蚀,然后再进行膨胀。这通常用于消除小的对象或噪声。
    数学表述为: A ∘ B = ( A ⊕ B ) ⊖ B A∘B=(A⊕B)⊖B AB=(AB)B

  • 闭运算(Closing):
    闭运算首先对图像进行膨胀,然后再进行腐蚀。这通常用于填充小的孔洞或连接不连续的对象。
    数学表述为: A ⋅ B = ( A ⊖ B ) ⊕ B A·B=(A⊖B)⊕B AB=(AB)B

7. 简述拉普拉斯算子、拉普拉斯算子的傅里叶变换?

五、计算

1.直方图均衡

一幅具有8个灰度级的图像的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02],求直方图均衡后的灰度级和对应概率,并画出均衡后归一化直方图的示意图。

2. Z 变换证明

Z变换是一种信号分析的重要工具。它有许多重要的性质,请对如下性质进行证明:

  • (1)若x(n)的Z变换为X(z),则 ( − 1 ) n x ( n ) (-1)^{n}x(n) (1)nx(n)的Z变换为 X(-z)
  • (2)若x(n)的Z变换为X(z),则 x(-n)的Z变换为 X ( 1 z ) X(\frac{1}{z}) X(z1)
  • (3)若x(n)的Z变换为X(z),则下x(2n)的Z变换为 1 2 [ X ( z 1 2 ) + X ( − z 1 2 ) ] \frac{1}{2}[X(z^\frac{1}{2})+X(-z^\frac{1}{2})] 21[X(z21)+X(z21)]
    证明:已知x(n)的Z变换为: X ( Z ) = ∑ − ∞ ∞ x ( n ) z − n X(Z)=\sum_{-\infty}^{\infty}{x(n)z^{-n}} X(Z)=x(n)zn
    • ( − 1 ) n x ( n ) {(-1)}^nx(n) (1)nx(n)的Z变换为:
      ∑ − ∞ ∞ ( − 1 ) n x ( n ) z − n = ∑ − ∞ ∞ ( − 1 ) − n x ( n ) z − n = ∑ − ∞ ∞ x ( n ) ( − z ) − n = X ( − z ) \sum_{-\infty}^{\infty}{\left(-1\right)^{n}x\left(n\right)z^{-n}}=\sum_{-\infty}^{\infty}{\left(-1\right)^{-n}x\left(n\right)z^{-n}}=\sum_{-\infty}^{\infty}{x\left(n\right)\left(-z\right)^{-n}}=X\left(-z\right) (1)nx(n)zn=(1)nx(n)zn=x(n)(z)n=X(z)

    • x(-n)的Z变换为:
      ∑ − ∞ ∞ x ( − n ) z − ( − n ) = ∑ − ∞ ∞ x ( − n ) ( z − 1 ) − n = X ( z − 1 ) = X ( 1 Z ) \sum_{-\infty}^{\infty}{x\left(-n\right)z^{-(-n)}}=\sum_{-\infty}^{\infty}{x\left(-n\right)\left(z^{-1}\right)^{-n}}=X\left(z^{-1}\right)=X\left(\frac{1}{Z}\right) x(n)z(n)=x(n)(z1)n=X(z1)=X(Z1)
      x(2n)的Z变换为
      ∑ − ∞ ∞ x ( 2 n ) z − n \sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}} x(2n)zn
      k = 2 n k=2n k=2n
      ∑ − ∞ ∞ x ( 2 n ) z − n = ∑ − ∞ ∞ x ( k ) z − k 2 \sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}}=\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}} x(2n)zn=x(k)z2k
      X ( z 1 2 ) = ∑ − ∞ ∞ x ( k ) z − k 2 X(z^{\frac{1}{2}})=\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}} X(z21)=x(k)z2k
      X ( z − 1 2 ) = ∑ − ∞ ∞ x ( k ) ( − 1 ) k z − k 2 X(z^{-\frac{1}{2}})=\sum_{-\infty}^{\infty}{x\left(k\right)(-1)^{k}z^{-\frac{k}{2}}} X(z21)=x(k)(1)kz2k相加得
      1 2 [ X ( z 1 2 ) + X ( − z 1 2 ) ] = ∑ − ∞ ∞ x ( k ) z − k 2 + ∑ − ∞ ∞ x ( k ) ( − 1 ) k z − k 2 = ∑ − ∞ ∞ x ( 2 n ) z − n \frac{1}{2}[X(z^\frac{1}{2})+X(-z^\frac{1}{2})]\\ =\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}}+\sum_{-\infty}^{\infty}{x\left(k\right)(-1)^{k}z^{-\frac{k}{2}}}\\=\sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}} 21[X(z21)+X(z21)]=x(k)z2k+x(k)(1)kz2k=x(2n)zn

3. 拉普拉斯旋转不变性证明

形式化描述什么是拉普拉斯算子,并证明拉普拉斯算子具有旋转不变性质
(二维平面内的旋转变换计算公式为 x ′ = x c o s θ − y s i n θ , y = x s i n θ + y c o s θ x'=xcosθ-ysinθ,y=xsinθ+ycosθ x=xcosθysinθy=xsinθ+ycosθ)
证明:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.推导出随机数生成方程

假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。
若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。
解: (1) 设U(0,1)可生成随机数 w ∈ [ 0 , 1 ] w\in [0,1] w[0,1],用它生成具有指数分布的随机数z,则其分布具有形式 F ( z ) = 1 − e − a z , z ≥ 0 F(z)=1-e^{-az},z\ge 0 F(z)=1eazz0
令F(z)=w,解得: z = − 1 a l n [ 1 − U ( 0 , 1 ) ] z=-\frac{1}{a}ln[1-U(0,1)] z=a1ln[1U(0,1)]
(2) 设N(0,1)可生成随机数 w ∈ [ 0 , 1 ] w\in [0,1] w[0,1],用它生成具有正态分布的随机数z,则其分布具有形式 F ( z ) = ∫ 0 z 1 2 π b F(z)=\int_{0}^{z}\frac{1}{\sqrt{2\pi b}} F(z)=0z2πb 1 e − [ l n ( v ) − a ] 2 2 b 2 d v e^{-\frac{[ln(v)-a]^{2}}{2b^{2}}}dv e2b2[ln(v)a]2dv
令F(z)=w,解得: z = e b w + a z=e^{bw+a} z=ebw+a
z = e b N ( 0 , 1 ) + a z=e^{bN(0,1)+a} z=ebN(0,1)+a

5. 快速小波变换分解与重建

在分析信号时小波分解与重建是一个重要的工具,离散 haar 小波是一种重要而简单J1/5 n=0.1的小波,它的尺度与小波向量分别为

  • (1)现在假设我们有一个长度为8的信号f[1,-3,3,1,2,0,-2,1],利用快速哈尔小波变换进行三层的分解,计算各层的滤波器输出。
  • (2)若利用哈尔小波对某个信号进行三层的分解的滤波器输出
    W = [ W φ ( 1 , 0 ) , W φ ( 1 , 0 ) , W φ ( 2 , 0 ) , W φ ( 2 , 1 ) , W φ ( 3 , 0 ) , W φ ( 3 , 1 ) , W φ ( 3 , 2 ) , W φ ( 3 , 3 ) ] = [ 1 , 1 , − 1 , − 1 , 1 , 0 , 1 , 0 ] W=[W_{\varphi }(1,0),W_{\varphi }(1,0),W_{\varphi }(2,0),W_{\varphi }(2,1),W_{\varphi }(3,0),W_{\varphi }(3,1),W_{\varphi }(3,2),W_{\varphi }(3,3)]=[ 1,1,-1,-1,1,0,1,0] W=[Wφ(1,0),Wφ(1,0),Wφ(2,0),Wφ(2,1),Wφ(3,0),Wφ(3,1),Wφ(3,2),Wφ(3,3)]=[1,1,1,1,1,0,1,0],请计算重建原来的信号。

相关文章:

国科大图像处理2023速通期末——汇总2017-2019

国科大2023.12.28图像处理0854期末重点 图像处理 王伟强 作业 课件 资料 一、填空 一个阴极射线管它的输入与输出满足 s r 2 sr^{2} sr2&#xff0c;这将使得显示系统产生比希望的效果更暗的图像&#xff0c;此时伽马校正通常在信号进入显示器前被进行预处理&#xff0c;令p…...

oracle 9i10g编程艺术-读书笔记2

配置Statspack 安装Statspack需要用internal身份登陆&#xff0c;或者拥有SYSDBA(connect / as sysdba)权限的用户登陆。需要在本地安装或者通过telnet登陆到服务器。 select instance_name,host_name,version,startup_time from v$instance;检查数据文件路径及磁盘空间&…...

PACC:数据中心网络的主动 CNP 生成方案

PACC&#xff1a;数据中心网络的主动 CNP 生成方案 文章目录 PACC&#xff1a;数据中心网络的主动 CNP 生成方案PACC算法CNP数据结构PACC参数仿真结果参考文献 PACC算法 CNP数据结构 PACC参数 仿真结果 PACC Hadoop Load0.2 的情况&#xff1a; PACC Hadoop Load0.4 的情况&a…...

我最喜欢的趣味几何书-读书笔记

我最喜欢的趣味几何书-读书笔记 1、利用阴影的长度来测量 公元前6世纪&#xff0c;古希腊哲学家泰勒思为了测量金字塔&#xff0c;想到了这样的方法&#xff1a;选择了一个特殊的时间&#xff0c;在那个时间&#xff0c;他自身的影子长度刚好跟他的身高相等。此时&#xff0c…...

Stable Diffusion模型概述

Stable Diffusion 1. Stable Diffusion能做什么&#xff1f;2. 扩散模型2.1 正向扩散2.2 反向扩散 3. 训练如何进行3.1 反向扩散3.2 Stable Diffusion模型3.3 潜在扩散模型3.4 变分自动编码器3.5 图像分辨率3.6 图像放大 4. 为什么潜在空间是可能的&#xff1f;4.1 在潜在空间中…...

二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)

目录 一、树概念及结构(了解) 1.1树的概念 1.2树的表示 二、二叉树概念及结构 2.1概念 2.2现实中的二叉树&#xff1a; 2.3数据结构中的二叉树&#xff1a; 2.4特殊的二叉树&#xff1a; 2.5 二叉树的存储结构 2.51 顺序存储&#xff1a; 2.5.2 链式存储&…...

C++日期类的实现

前言&#xff1a;在类和对象比较熟悉的情况下&#xff0c;我们我们就可以开始制作日期表了&#xff0c;实现日期类所包含的知识点有构造函数&#xff0c;析构函数&#xff0c;函数重载&#xff0c;拷贝构造函数&#xff0c;运算符重载&#xff0c;const成员函数 1.日期类的加减…...

B+树的插入删除

操作 插入 case2的原理,非叶子节点永远和最右边的最左边的节点的值相等。 case3:的基本原理 非叶子节点都是索引节点 底层的数据分裂之后 相当于向上方插入一个新的索引(你可以认为非叶子节点都是索引),反正第二层插入160 都要分裂,然后也需要再插入(因为索引部分不需要重…...

c# Avalonia 绘图

在Avalonia UI框架中&#xff0c;绘图主要通过使用DrawingContext类来实现。DrawingContext提供了一系列的绘图API&#xff0c;可以用来绘制线条、形状、图像以及文本等内容。以下是一个简单的示例&#xff0c;说明如何在Avalonia中进行基础的图形绘制 <!-- MainWindow.axa…...

springboot 双数据源配置

1:pom <!--SpringBoot启动依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</group…...

Redis内存使用率高,内存不足问题排查和解决

问题现象 表面现象是系统登录突然失效&#xff0c;排查原因发现&#xff0c;使用redis查询用户信息异常&#xff0c;从而定位到redis问题 if (PassWord.equals(dbPassWord)) {map.put("rtn", 1);map.put("value", validUser);session.setAttribute("…...

bootstrap5开发房地产代理公司Hamilton前端页面

一、需求分析 房地产代理网站是指专门为房地产行业提供服务的在线平台。这些网站的主要功能是连接房地产中介机构、房产开发商和潜在的买家或租户&#xff0c;以促成买卖或租赁房产的交易。以下是一些常见的房地产代理网站的功能&#xff1a; 房源发布&#xff1a;房地产代理网…...

2024年Mac专用投屏工具AirServer 7 .27 for Mac中文版

AirServer 7 .27 for Mac中文免费激活版是一款Mac专用投屏工具&#xff0c;能够通过本地网络将音频、照片、视频以及支持AirPlay功能的第三方App&#xff0c;从 iOS 设备无线传送到 Mac 电脑的屏幕上&#xff0c;把Mac变成一个AirPlay终端的实用工具。 目前最新的AirServer 7.2…...

关于MySql字段类型的实践总结

当字段为数值类型时应使用无符号UNSIGNED修饰 ALTER TABLE infoMODIFY COLUMN user_id int UNSIGNED NOT NULL; 当字段为varchar类型时应注意是否选择合适的字符集 例如存储一些范围值&#xff0c;数字英文字符时&#xff08;IP、生日、客户端标识等或以“,”分隔的数据&…...

UG NX二次开发(C#)-Ufun和NXOpen混合编程

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、Ufun函数3、 NXOpen4、混合编程实现1、前言 在UG NX二次开发过程中,采用Ufun功能比较简单,能用比较少的代码实现我们需要的功能,但是ufun函数的功能不是很强大,尤其随着UG NX的版本…...

【Spark精讲】一文讲透Spark RDD

MapReduce的缺陷 MR虽然在编程接口的种类和丰富程度上已经比较完善了&#xff0c;但这些系统普遍都缺乏操作分布式内存的接口抽象&#xff0c;导致很多应用在性能上非常低效 。 这些应用的共同特点是需要在多个并行操 作之间重用工作数据集 &#xff0c;典型的场景就是机器学习…...

如在MT9040、IDT82V3001A 等锁相环上电后或输入参考频率改变后必须复位锁相环。

锁相环是一种反馈控制系统,它能够将输出信号的相位锁定到输入参考信号的相位上。在实际应用中,如MT9040、IDT82V3001A等PLL集成电路在上电后或者当输入参考频率发生变化后通常需要复位的原因涉及到几个方面: 1、初始化状态: 当PLL电路上电时,其内部的各个组件可能…...

构建安全的SSH服务体系

某公司的电子商务站点由专门的网站管理员进行配置和维护&#xff0c;并需要随时从Internet进行远程管理&#xff0c;考虑到易用性和灵活性&#xff0c;在Web服务器上启用OpenSSH服务&#xff0c;同时基于安全性考虑&#xff0c;需要对 SSH登录进行严格的控制&#xff0c;如图10…...

wpf ComboBox绑定数据及变更事件

定义ComboBox&#xff0c;以及SelectionChanged事件 <ComboBox x:Name"cmb_radius" Height"30" Width"65" FontSize"15" DisplayMemberPath"Value" SelectedValuePath"Key" HorizontalAlignment"Center&…...

SQL BETWEEN 操作符

BETWEEN 操作符选取介于两个值之间的数据范围内的值。这些值可以是数值、文本或者日期。 SQL BETWEEN 语法 SELECT column1, column2, ... FROM table_name WHERE column BETWEEN value1 AND value2; 参数说明&#xff1a; column1, column2, ...&#xff1a;要选择的字段名…...

Java位运算及移位运算

java中能表示整数数据类型的有byte、short、char、int、long&#xff0c;在计算机中占用的空间使用字节描述&#xff0c;1个字节使用8位二进制表示。 数据类型字节数二进制位数表示范围默认值byte18-27 – 27-10char2160 – 216-1\u0000 (代表字符为空 转成int就是0)short216-…...

上界通配符(? extends Type)

在Java中&#xff0c;? extends Type是一个上界通配符&#xff0c;表示参数化类型的上限是Type。这意味着容器可以持有Type类型的任何对象或者Type的子类型对象。 使用场景 这种类型的通配符常用于泛型方法中&#xff0c;允许方法接受Type的实例或其子类型的集合。这同样基于…...

zlib.decompressFile报错 【Bug已解决-鸿蒙开发】

文章目录 项目场景:问题描述原因分析:解决方案:方案1方案2此Bug解决方案总结寄语项目场景: 最近也是遇到了这个问题,看到网上也有人在询问这个问题,本文总结了自己和其他人的解决经验,解决了zlib.decompressFile报错 的问题。 问题: zlib.decompressFile报错,怎么解…...

54.网游逆向分析与插件开发-游戏增加自动化助手接口-项目需求与需求拆解

内容来源于&#xff1a;易道云信息技术研究院VIP课 项目需求&#xff1a; 为游戏增加VIP功能-自动化助手。自动化助手做的是首先要说一下背景&#xff0c;对于授权游戏来讲它往往年限都比较老&#xff0c;老游戏和新游戏设计理念是不同的&#xff0c;比如说老游戏基本上在10年…...

Spring Boot笔记2

3. SpringBoot原理分析 3.1. 起步依赖原理解析 3.1.1. 分析spring-boot-starter-parent 按住Ctrl键&#xff0c;然后点击pom.xml中的spring-boot-starter-parent&#xff0c;跳转到了spring-boot-starter-parent的pom.xml&#xff0c;xml配置如下&#xff08;只摘抄了部分重…...

MySQL5.7服务器 SQL 模式

官网地址&#xff1a;MySQL :: MySQL 5.7 Reference Manual :: 5.1.10 Server SQL Modes 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. MySQL 5.7 参考手册 / ... / 服务器 SQL 模式 5.1.10 服务器 SQL 模式…...

关于LayUI表格重载数据问题

目的 搜索框搜索内容重载数据只显示搜索到的结果 遇到的问题 在layui官方文档里介绍的table属性有data项,但使用下列代码 table.reload(test, {data:data //data为json数据}); 时发现&#xff0c;会会重新调用table.render的url拿到原来的数据&#xff0c;并不会显示出来传…...

MyBatis-mapper.xml配置

1、配置获取添加对象的ID <!-- 配置我们的添加方法&#xff0c;获取到新增加了一个monster对象的iduseGeneratedKeys"true" 意思是需要获取新加对象的主键值keyProperty"monster_id" 表示将获取到的id值赋值给Monster对象的monster_id属性 --><…...

【如何选择Mysql服务器的CPU核数及内存大小】

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容&#x1f4e2;文章总结&#x1f4e5;博主目标 &#x1f50a;博主介绍 &#x1f31f;我是廖志伟&#xff0c;一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作…...

【从浅到深的算法技巧】4.静态方法

1.1.6静态方法 在许多语言中&#xff0c;静态方法被称为函教&#xff0c;静态方法是一组在被调用时会被顺序执行的语句。修饰符static将这类方法和1.2的实例方法区别开来。当讨论两类方法共有的属性时我们会使用不加定语的方法一词。 1.1.6.1静态方法 方法封装了由一系列语句…...

YOLO手部目标检测

手部目标检测原文地址如下&#xff1a;手部关键点检测2&#xff1a;YOLOv5实现手部检测(含训练代码和数据集)_yolov5 关键点检测-CSDN博客 手部检测数据集地址如下&#xff1a; 手部关键点检测1&#xff1a;手部关键点(手部姿势估计)数据集(含下载链接)_手关键点数据集-CSDN博…...

网络IP地址如何更改?怎么使用动态代理IP提高网速?

网络IP地址更改以及使用动态代理IP提高网速的步骤如下&#xff1a; 一、更改IP地址 1. 打开浏览器&#xff0c;输入路由器登陆地址并登陆路由器后台管理界面。 2. 找到“高级设置”或“无线设置”或“VPN设置”一栏&#xff0c;点击“断开”&#xff0c;即可断开网络&#xff0…...

Flink实时电商数仓之DWS层

需求分析 关键词 统计关键词出现的频率 IK分词 进行分词需要引入IK分词器&#xff0c;使用它时需要引入相关的依赖。它能够将搜索的关键字按照日常的使用习惯进行拆分。比如将苹果iphone 手机&#xff0c;拆分为苹果&#xff0c;iphone, 手机。 <dependency><grou…...

MFC - CArchive/内存之间的序列化应用细节

文章目录 MFC - CArchive/内存之间的序列化应用细节概述笔记END MFC - CArchive/内存之间的序列化应用细节 概述 有个参数文件, 开始直接序列化到文件. 现在优化程序, 不想这个参数文件被用户看到. 想先由参数发布程序(自己用)设置好参数后, 加个密落地. 等用户拿到后, 由程序…...

C语言实验4:指针

目录 一、实验要求 二、实验原理 1. 指针的基本概念 1.1 指针的定义 1.2 取地址运算符&#xff08;&&#xff09; 1.3 间接引用运算符&#xff08;*&#xff09; 2. 指针的基本操作 2.1 指针的赋值 2.2 空指针 3. 指针和数组 3.1 数组和指针的关系 3.2 指针和数…...

项目——————————

C/C Linux Socket网络编程 TCP 与 UDP_c 语言tcp socket cleint read-CSDN博客C/C Socket - TCP 与 UDP 网络编程_c socket udp-CSDN博客 登录—专业IT笔试面试备考平台_牛客网...

【论文阅读】Realtime multi-person 2d pose estimation using part affinity fields

OpenPose&#xff1a;使用PAF的实时多人2D姿势估计。 code&#xff1a;GitHub - ZheC/Realtime_Multi-Person_Pose_Estimation: Code repo for realtime multi-person pose estimation in CVPR17 (Oral) paper&#xff1a;[1611.08050] Realtime Multi-Person 2D Pose Estima…...

图像分割实战-系列教程9:U2NET显著性检测实战1

&#x1f341;&#x1f341;&#x1f341;图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 U2NET显著性检测实战1 1、任务概述...

RK3568平台 Android13 GKI架构开发方式

一.GKI简介 GKI&#xff1a;Generic Kernel Image 通用内核映像。 Android13 GMS和EDLA认证的一个难点是google强制要求要支持GKI。GKI通用内核映像&#xff0c;是google为了解决内核碎片化的问题&#xff0c;而设计的通过提供统一核心内核并将SoC和板级驱动从核心内核移至可加…...

阿里云服务器节省计划价格便宜_成本优化全解析

阿里云服务器付费模式节省计划怎么收费&#xff1f;为什么说节省计划更节省成本&#xff1f;节省计划是一种折扣权益计划&#xff0c;可以抵扣按量付费实例&#xff08;不含抢占式实例&#xff09;的账单。相比包年包月实例&#xff0c;以及预留实例券和按量付费实例的组合&…...

3种依赖管理工具实现requirements.txt文件生成

1.pip 实现方式 要使用 pip 生成 requirements.txt 文件&#xff0c;可以使用以下命令&#xff1a; pip freeze > requirements.txt这个命令会将当前环境中所有已安装的 Python 包及其版本信息输出到 requirements.txt 文件中。这个文件可以用于共享项目的依赖信息&#xf…...

超图iClient3DforCesium地形、影像、模型、在线影像交互示例

超图iClient3DforCesium地形、影像、模型、在线影像交互示例 描述示例代码 描述 数据源&#xff1a;基于iserver发布的三维场景(地形、影像、BIM模型) 在线arcgis影像 应用&#xff1a;目录树展示源数据列表、目录树控制源数据可视化结果显隐、BIM模型点选查询关联属性 示例代…...

【解决】电脑上的WIFI图标不见了咋整?

相信不少同学都遇到过这种情况&#xff1a;电脑上的wifi图标莫名不见了&#xff0c;甚至有时候还是在使用的中途突然断网消失的。 遇到这种情况一般有两种解决方案&#xff1a; 1. 在开机状态下长按电源键30秒以上 这种办法应该是给主板放电&#xff0c;一般应用在wifi6上面。…...

2 - 表结构 | MySQL键值

表结构 | MySQL键值 表管理1. 库的操作2. 表的操作表的创建与删除表的修改复制表 3. 管理表记录 数据类型数值类型字符类型&#xff08;汉字或者英文字母&#xff09;日期时间类型 表头存储与日期时间格式的数据枚举类型 数据批量处理 表管理 客户端把数据存储到数据库服务器上…...

Redis(Linux版本7.2.3)

1、停止Redis服务器 [roottssvr1-c1 sysconfig]# ps -ef | grep redis root 322 1 0 10月30 ? 02:58:53 ./bin/redis-server 0.0.0.0:6379 root 32664 12498 0 14:45 pts/0 00:00:00 grep --colorauto redis [roottssvr1-c1 sysconfig]# [roottssvr…...

八股文打卡day18——操作系统(1)

面试题&#xff1a;进程和线程的区别&#xff1f; 我的回答&#xff1a; 1.概念上。进程是系统进行资源分配和调度的基本单位。线程是系统进行运算调度的最小单位。线程是进程的子任务&#xff0c;一个进程至少包含一个线程&#xff0c;一个进程可以运行多个线程&#xff0c;…...

设计模式—行为型模式之模板方法模式

设计模式—行为型模式之模板方法模式 在模板模式&#xff08;Template Pattern&#xff09;中&#xff0c;一个抽象类公开定义了执行它的方法的方式模板。它的子类可以按需要重写方法实现&#xff0c;但调用将以抽象类中定义的方式进行。 模板方法&#xff08;Template Metho…...

机器学习的分类与经典算法

机器学习算法按照学习方式分类&#xff0c;可以分为有监督学习&#xff08;Supervised Learning&#xff09;、无监督学习&#xff08;Unsupervised Learning&#xff09;、半监督学习&#xff08;Semi-supervised Learning&#xff09;、强化学习&#xff08;Reinforcement Le…...

2.3物理层下面的传输媒体

目录 2.3物理层下面的传输媒体2.3.1导引型传输媒体1.双绞线2.同轴电缆3.光纤 2.3.2非导引型传输媒体无线电微波通信 2.3物理层下面的传输媒体 传输媒体是数据传输系统中在发送器和接收器之间的物理通路 两大类&#xff1a; 导引型传输媒体&#xff1a;电磁波被导引沿着固体媒体…...

笙默考试管理系统-MyExamTest----codemirror(57)

笙默考试管理系统-MyExamTest----codemirror&#xff08;57&#xff09; 目录 一、 笙默考试管理系统-MyExamTest----codemirror 二、 笙默考试管理系统-MyExamTest----codemirror 三、 笙默考试管理系统-MyExamTest----codemirror 四、 笙默考试管理系统-MyExamTest---…...