当前位置: 首页 > news >正文

Spark---RDD算子(单值类型Value)

文章目录

  • 1.RDD算子介绍
  • 2.转换算子
      • 2.1 Value类型
          • 2.1.1 map
          • 2.1.2 mapPartitions
          • 2.1.3 mapPartitionsWithIndex
          • 2.1.4 flatMap
          • 2.1.5 glom
          • 2.1.6 groupBy
          • 2.1.7 filter
          • 2.1.8 sample
          • 2.1.9 distinct
          • 2.1.10 coalesce
          • 2.1.11 repartition
          • 2.1.12 sortBy

1.RDD算子介绍

RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类:
转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括map、filter、flatMap等,它们通过对RDD的每个元素执行相应的操作来生成新的RDD。
行动算子(Action): 行动算子触发对RDD的实际计算,并返回计算结果或将结果写入外部存储系统。与转换算子不同,行动算子会导致Spark作业的执行。如collect方法。

2.转换算子

RDD 根据数据处理方式的不同将算子整体上分为:
Value 类型:对一个RDD进行操作或行动,生成一个新的RDD。
双 Value 类型:对两个RDD进行操作或行动,生成一个新的RDD。
Key-Value类型:对键值对进行操作,如reduceByKey((x, y),按照key对value进行合并。

2.1 Value类型

2.1.1 map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

函数定义
def map[U: ClassTag](f: T => U): RDD[U]

代码实现:

    //建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4))//对mapRdd进行转换val mapRdd1 = mapRdd.map(num => num * 2)//对mapRdd1进行转换val mapRdd2 = mapRdd1.map(num => num + "->")mapRdd2.collect().foreach(print)sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.2 mapPartitions

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

函数定义
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

mapPartitions在处理数据的时候因为是批处理,相对于map来说处理效率较高,但是如果数据量较大的情况下使用mapPartitions可能会造成内存溢出,因为mapPartitions会将分区内的数据全部加载到内存中。此时更推荐使用map。

2.1.3 mapPartitionsWithIndex

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

函数定义
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

实现只保留第二个分区的数据

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4),2)val newRdd: RDD[Int] = mapRdd.mapPartitionsWithIndex((index, iterator) => {if (index == 1) iteratorelse Nil.iterator})newRdd.collect().foreach(println)
2.1.4 flatMap

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

       //建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[List[Int]] = sparkRdd.makeRDD(List(List(1, 2), List(3, 4)))val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello Java", "Hello Scala"), 2)val frdd1: RDD[Int] =rdd1.flatMap(list=>{list})val frdd2: RDD[String] =rdd2.flatMap(str=>str.split(" "))frdd1.collect().foreach(println)frdd2.collect().foreach(println)sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.5 glom

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变,glom函数的作用就是将一组数据转换为数组。

函数定义
def glom(): RDD[Array[T]]

    /建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[Any] = sparkRdd.makeRDD(List(1,2,3,4),2)val value: RDD[Array[Any]] = rdd1.glom()value.collect().foreach(data=> println(data.mkString(",")))sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.6 groupBy

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。 极限情况下,数据可能被分在同一个分区中

函数定义
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

	    //按照奇偶分组val rdd1: RDD[Int] = sparkRdd.makeRDD(List(1,2,3,4),2)val value = rdd1.groupBy(num => num % 2)value.collect().foreach(println)//将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello", "hive", "hbase", "Hadoop"))val value1: RDD[(Char, Iterable[String])] = rdd2.groupBy(str => {str.charAt(0)})value1.collect().foreach(println)

在这里插入图片描述

2.1.7 filter

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

函数定义
def filter(f: T => Boolean): RDD[T]

	//获取偶数val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4), 1)val value1 = dataRDD.filter(_ % 2 == 0)
2.1.8 sample

函数定义
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]

根据指定的规则从数据集中抽取数据

参数具体意义:
1.抽取数据不放回withReplacement: Boolean, 该参数表示抽取不放回,此时采用伯努利算法(false)fraction: Double,该参数表示抽取的几率,范围在[0,1]之间,0:全不取;1:全取;seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子2.抽取数据放回withReplacement: Boolean, 该参数表示抽取放回,此时采用泊松算法(true)fraction: Double,该参数表示重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子
2.1.9 distinct

将数据集中重复的数据去重

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)val value = dataRDD.distinct()

在这里插入图片描述

2.1.10 coalesce

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]

    //初始Rdd采用6个分区val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)//将分区数量缩减至2个val value = dataRDD.coalesce(2)

在coalesce中默认不开启shuffle,在进行分区缩减的时候,数据不会被打散。
在这里插入图片描述

2.1.11 repartition

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

repartition内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
在这里插入图片描述

	//将分区数量从2个提升至4个val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)val dataRDD1 = dataRDD.repartition(4)
2.1.12 sortBy

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

def sortBy[K](
f: (T) => K, 该参数表述用于处理的函数
ascending: Boolean = true, 该参数表示是否升序排序
numPartitions: Int = this.partitions.length) 该参数表示设置分区数量
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)//按照初始数据降序排列val dataRDD1 = dataRDD.sortBy(num => num, false, 4)

相关文章:

Spark---RDD算子(单值类型Value)

文章目录 1.RDD算子介绍2.转换算子2.1 Value类型2.1.1 map2.1.2 mapPartitions2.1.3 mapPartitionsWithIndex2.1.4 flatMap2.1.5 glom2.1.6 groupBy2.1.7 filter2.1.8 sample2.1.9 distinct2.1.10 coalesce2.1.11 repartition2.1.12 sortBy 1.RDD算子介绍 RDD算子是用于对RDD进…...

数据库中的MVCC--多版本并发控制

一、前言 1、定义:MVCC(Multi-Version Concurrency Control),多版本并发控制,主要为了提高数据库 的并发性能。是MySQL的InnoDB存储引擎实现隔离级别的一种具体方式。用于实现提交读和可重 复读这两种隔离级别。 2…...

wps将姓名处理格式为:姓**

1.打开wps,在要处理数据右侧一个单元格 输入公式:LEFT(A1,1)&"**",然后回车 2.按住ctrl和处理好的数据的右下角小方框,往下拖动即可生成格式为:姓** 格式的数据 3.复制生成的数据,右键选择 “…...

2023年我的编程之旅:技术演进与自我成长的纪录

2023年我的编程之旅:技术演进与自我成长的纪录 转眼间,2023年已经悄然走到了尾声。这一年,对我来说既是挑战也是机遇的一年。我的编程之旅如同坐上了一辆高速前进的列车,从新技术的学习探索到项目实战的沉浸经历,再到…...

好用免费的WAF---如何安装雷池社区版

什么是雷池​ 雷池(SafeLine)是长亭科技耗时近 10 年倾情打造的 WAF,核心检测能力由智能语义分析算法驱动。 Slogan: 不让黑客越雷池半步。 什么是 WAF​ WAF 是 Web Application Firewall 的缩写,也被称为 Web 应用防火墙。 …...

看似 bug 又非 bug 的一个 bug

最近的一个项目中&#xff0c;对于 CSS 的一些属性一些选择符可以大胆使用&#xff0c;然后很意外得撞上一个 iOS 中 Safari 的一个解析问题。 <Component style{{height: "calc(100vh - 46px)"}}>一个组件</Component> 这样的一段代码很简单&#xff…...

mysql常见问题

批量导入SQL 数据库结构 数据时&#xff0c;如果数据是批量插入的话会报错&#xff1a;2006 - MySQL server has gone away。 解决办法&#xff1a;找到你的 mysql 目录下的 my.ini 配置文件&#xff0c;加入以下代码 max_allowed_packet500M wait_timeout288000 interactiv…...

QT上位机开发(串口界面设计)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 如果上位机要和嵌入式设备进行打交道的话&#xff0c;那么串口可能就是我们遇到的第一个硬件设备。串口的物理接线很简单&#xff0c;基本上就是收…...

k8s之pod

1、pod&#xff1a;k8s中最小的资源管理组件&#xff0c;最小化运行容器化应用的资源管理对象 &#xff08;1&#xff09;pod是一个抽象的概念&#xff0c;可以理解为一个或者多个容器化应用的集合 &#xff08;2&#xff09;一个pod中运行一个容器是最常用的方式 &#xff…...

第二百四十三回 再分享一个Json工具

文章目录 1. 概念介绍2. 分析与比较2.1 分析问题2.2 比较差异 3. 使用方法4. 内容总结 我们在上一章回中介绍了"分享三个使用TextField的细节"相关的内容&#xff0c;本章回中将再 分享一个Json插件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我…...

electron自定义菜单

创建menu.js const { app, Menu } require("electron"); const createMenu () > {const menu [{label: "菜单",submenu: [{label: "新增",click: () > {},}, ],},{label: "关于",submenu: [{label: "新增",click:…...

变量和函数提升(js的问题)

• js解释执行 • 变量和函数提升 变量声明提前&#xff0c;函数声明提前 • 变量声明提前&#xff1a;值停留在本地 • 函数声明提前&#xff1a;整个函数体提前 如果是var赋值声明的函数&#xff0c;变量提前&#xff0c;函数体停留在本地 1、变量提…...

Excel 插件:ASAP Utilities Crack

ASAP Utilities是一款功能强大的 Excel 插件&#xff0c;填补了 Excel 的空白。在过去的 20 年里&#xff0c;我们的加载项已经发展成为世界上最受欢迎的 Microsoft Excel 加载项之一。 ASAP Utilities 中的功能数量&#xff08;300 多个&#xff09;可能看起来有点令人眼花缭乱…...

hyperf 十九 数据库 二 模型

教程&#xff1a;Hyperf 一、命令行 symfony/console-CSDN博客 hypery 十一、命令行-CSDN博客 hyperf console 执行-CSDN博客 根据之前应该能了解到命令行的基本实现&#xff0c;和hyperf中命令行的定义。 1.1 命令初始化 hyperf.php中系统初始化中通过ApplicationFacto…...

使用python快速开发与PDF文档对话的Gemini聊天机器人

检索增强生成(Retrieval-augmented generation&#xff0c;RAG)使得我们可以让大型语言模型(LLMs)访问外部知识库数据(如pdf,word、text等)&#xff0c;从而让人们可以更加方便的通过LLM来学习外部数据的知识。今天我们将利用之前学习到的RAG方法&#xff0c;谷歌Gemini模型和l…...

Spring Cloud Gateway集成Knife4j

1、前提 网关路由能够正常工作。 案例 基于 Spring Cloud Gateway Nacos 实现动态路由拓展的参考地址&#xff1a;Spring Cloud Gateway Nacos 实现动态路由 详细官网案例&#xff1a;https://doc.xiaominfo.com/docs/middleware-sources/spring-cloud-gateway/spring-gatewa…...

Hive10_窗口函数

窗口函数&#xff08;开窗函数&#xff09; 1 相关函数说明 普通的聚合函数聚合的行集是组,开窗函数聚合的行集是窗口。因此,普通的聚合函数每组(Group by)只返回一个值&#xff0c;而开窗函数则可为窗口中的每行都返回一个值。简单理解&#xff0c;就是对查询的结果多出一列…...

ipvsadm命令详解

ipvsadm命令详解 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将深入探讨一个在Linux系统网络管理中极具威力的命令——ipvsadm&#xff0c;通过详细解析…...

zabbix通过自动发现-配置监控项、触发器(小白教程)

自动发现配置参考链接&#xff08;不小白&#xff0c;不友好&#xff09; zabbix-get介绍 1配置 zabbix server&#xff1a;版本7&#xff08;不影响&#xff09;,IP地址&#xff1a;192.168.0.60zabbix agent&#xff1a;版本agent1&#xff08;不影响&#xff09;&#xff…...

Dockerfile文件介绍

0 Preface/Foreword 0.1 Docker docker用来自制镜像。 1 Introduction 1.1 Dockerfile Dockerfile是用于定义Docker镜像的构建过程&#xff0c;它包含一系列的指令用于安装 软件包、配置环境等操作。 Dockerfile文件的格式如下&#xff1a; FROM base_image RUN apt-get up…...

【PHP】函数array_reduce()使用场景

目录 1.计算数组中所有元素的和 2.计算数组中所有元素的乘积 3.将多个字符串连接在一起 4.对数组中的元素进行逻辑计算 5.取出第一个满足条件的数组&#xff0c;筛选有用数组 6.array_reduce()函数的基本语法&#xff1a; array_reduce 函数通常用于对数组中的元素进行累…...

软件测试基础理论学习-软件测试方法论

软件测试方法论 软件测试的方法应该建立在不同的软件测试类型上&#xff0c;不同的测试类型会存在不同的方法。本文以软件测试中常见的黑盒测试为例&#xff0c;简述常见软件测试方法。 黑盒测试用例设计方法包括等价类划分法、边界值分析法、因果图法、判定表驱动法、正交试…...

Unity 关于点击不同物品移动并触发不同事件

关于点击不同物品触发不同事件 可以实现在界面中点击不同的物体&#xff0c;移动到物品附近位置&#xff0c;然后触发对应的事件。 首先建立一个公共管理的类&#xff1a; public class InteractionObject : MonoBehaviour {private NavMeshAgent PlayerAgent;private bool …...

c++IO库详细介绍

文章目录 前言c IO 类简介1. iostream库iostream 类标准IO对象 2. fstream库fstream 类 3. stringstream库stringstream 类 格式化和控制错误处理 IO对象无拷贝或赋值IO条件状态主要的状态标志检查流状态控制流状态示例 管理输出缓冲主要操作示例 文件输入输出使用文件流对象示…...

海外静态IP和动态IP有什么区别?推荐哪种?

什么是静态ip、动态ip&#xff0c;二者有什么区别&#xff1f;哪种好&#xff1f;关于这个问题&#xff0c;不难发现&#xff0c;在知道、知乎上面的解释有很多&#xff0c;但据小编的发现&#xff0c;这些回答都是关于静态ip和动态ip的专业术语解释&#xff0c;普通非专业人事…...

OpenHarmony从入门到放弃(一)

OpenHarmony从入门到放弃&#xff08;二&#xff09; 一、OpenHarmony的基本概念和特性 OpenHarmony是由开放原子开源基金会孵化及运营的开源项目&#xff0c;其目标是构建一个面向全场景、全连接、全智能的时代的智能终端设备操作系统。 分布式架构 OpenHarmony采用分布式…...

Unity3D UGUI图集打包与动态使用(TexturePacker)

制作图集的好处&#xff1a; 众所周知CPU是用来处理游戏的逻辑运算的&#xff0c;而GPU是用来处理游戏中图像的。在GPU中&#xff0c;我们要绘制一个图像需要提交图片&#xff08;纹理&#xff09;到显存&#xff0c;然后再进行绘制&#xff08;在这个过程中会产生一次DrawCall…...

java maven项目添加oracle jdbc的依赖

一般添加依赖是直接在pom.xml中添加配置即可&#xff0c;Maven会自动获取对应的jar包&#xff0c;但是oracle驱动依赖添加后会显示红色&#xff0c;代表找不到依赖项&#xff0c;是因为Oracle授权问题&#xff0c;Maven3不提供Oracle JDBC driver&#xff0c;为了在Maven项目中…...

【UEFI基础】EDK网络框架(环境配置)

环境配置 为了能够让使用测试BIOS的QEMU与主机&#xff08;就是指普通的Windows系统&#xff0c;我们使用它来编译BIOS和启动QEMU虚拟机&#xff09;通过网络连接&#xff0c;需要额外的配置。 首先是下载和安装OpenVPN&#xff08;这里安装的是OpenVPN-2.5.5-I601-amd64.msi…...

K8S学习指南(60)-K8S源代码走读之API-Server

文章目录 API Server 的代码结构API Server 的核心逻辑1. 请求处理流程1.1 HTTP 请求处理1.2 认证和授权1.3 API 版本处理1.4 资源路由1.5 资源处理1.6 响应生成 2. 存储层2.1 存储接口定义2.2 存储实现 二次开发扩展点1. 插件机制1.1 插件注册1.2 插件实现 2. 自定义资源定义&…...

郑州百度seo网站优化/如何做谷歌seo推广

获取服务器信息$sysos $_SERVER["SERVER_SOFTWARE"]; //获取服务器标识的字串$sysversion PHP_VERSION; //获取PHP服务器版本//以下两条代码连接mysql数据库并获取MySQL数据库版本信息mysql_connect("localhost", "mysql_user", "mysql_p…...

长春找工作哪个网站好/百度高级搜索功能

用PHP4.2书写安全的脚本_PHP在很长一段时间内&#xff0c;PHP作为服务器端脚本语言的最大卖点之一就是会为从表单提交的值自动建立一个全局变量。在PHP 4.1中&#xff0c;PHP的制作者们推荐了一个访问提交数据的替代手段。在PHP 4.2中&#xff0c;他们取消了那种老的做法&#…...

哪些网站是用vue做的/郑州搜索引擎优化公司

五. 收到退信错误提示为"554 5.7.1 Rejected xxx.xxx.xxx.xxx found in dnsbl.sorbs.net"&#xff0c;怎么办&#xff1f;这是因为收件人所在的邮件服务器使用RBL过滤垃圾邮件&#xff0c;而您的邮件服务器IP地址在RBL列表中&#xff0c;因此被拒绝了。一般此类的退信…...

怎么做电商平台网站/google浏览器官网

只讲使用mdev创建设备文件。。。。。1、mdev的用法可以参考busybox-1.9.2/docs/mdev.txt,它的两个用途&#xff1a;初始化/dev目录、动态更新。以下为摘取部分关于mdev的命令&#xff1a;Heres a typical code snippet from the init script:[1] mount -t sysfs sysfs /sys[2] …...

有用织梦做的大网站吗/专门用来查找网址的网站

作者&#xff1a;Natasha The Robot&#xff0c;原文链接&#xff0c;原文日期&#xff1a;2016-07-25译者&#xff1a;Lanford3_3&#xff1b;校对&#xff1a;千叶知风&#xff1b;定稿&#xff1a;CMB上周我出席了 iOSDevCampDC&#xff0c;并有幸参加了 ayanonagon 关于测试…...

wordpress浏览图片失败/百度竞价怎么做效果好

前面一篇文章[Flutter实战1 写一个天气查询的APP]实现了一个显示城市、温度、天气、湿度的界面&#xff0c;但是这个界面只有一个显示的功能&#xff0c;没有任何可交互的地方&#xff0c;本篇文章继续完善查询天气的APP的功能。 先上效果图&#xff1b; 增加两个功能&#xff…...