Cell 文章图复现
多组差异火山图复现
参考文章: A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart Figure 2. H

图里主要是单细胞数据不同cluster之间的差异火山图, 所以说白了就是散点图和柱状图的结合, 散点图用差异基因绘制, 柱状图利用logFC最大最小值绘制就完了.
加载包
> library(tidyverse)
> library(ggplot2)
> library(ggpubr)
> library(RColorBrewer)
> library(openxlsx)
> library(ggsci)
> library(ggrepel)
> # Create color parameters
> qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
> col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
>
读取数据
> deg <- read.csv("./Differentially_Expressed_Markers_Each_Cluster.csv", header = T)
> deg$cluster <- as.factor(deg$cluster)
> head(deg)X p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
1 1 0 2.558924 0.982 0.289 0 0 DEFB1
2 2 0 2.365316 0.963 0.220 0 0 HMGCS2
3 3 0 2.317304 0.991 0.513 0 0 ATP1B1
4 4 0 2.207154 0.963 0.231 0 0 AC015522.1
5 5 0 2.153153 0.912 0.244 0 0 HSD11B2
6 6 0 2.125726 0.811 0.209 0 0 PAPPA2
> deg <- deg %>% dplyr::filter(p_val_adj < 0.05) %>%
+ dplyr::filter(abs(avg_log2FC) > 0.75) %>%
+ dplyr::select(avg_log2FC, p_val_adj, cluster, gene) # filter and tidy the matrix
>
添加一些注释信息, 例如legend, 上下调, 需要显示名称的基因等
> deg <- deg %>%
+ mutate(label = ifelse(p_val_adj < 0.01, "adjusted P-val < 0.01", "adjusted P-val >= 0.01")) %>%
+ mutate(Change = ifelse(avg_log2FC > 0.75, "UP", "DOWN"))
>
> bardata <- deg %>% dplyr::select(cluster, avg_log2FC ) %>%
+ group_by(cluster) %>%
+ summarise_all(list(tail = min, top = max)) #
> head(bardata)
# A tibble: 6 × 3cluster tail top<fct> <dbl> <dbl>
1 0 -5.61 2.56
2 1 -5.13 4.32
3 2 -5.46 2.53
4 3 -4.84 4.81
5 4 -5.60 3.97
6 5 -4.59 2.96
>
> tagedgene <- deg %>% group_by(cluster) %>%
+ slice_max(abs(avg_log2FC), n = 3)
> head(tagedgene)
# A tibble: 6 × 6
# Groups: cluster [2]avg_log2FC p_val_adj cluster gene label Change<dbl> <dbl> <fct> <chr> <chr> <chr>
1 -5.61 0 0 ALDOB adjusted P-val < 0.01 DOWN
2 -5.46 0 0 HSPA1A adjusted P-val < 0.01 DOWN
3 -5.09 0 0 GPX3 adjusted P-val < 0.01 DOWN
4 -5.13 0 1 DEFB1 adjusted P-val < 0.01 DOWN
5 -4.61 0 1 CRYAB adjusted P-val < 0.01 DOWN
6 -4.36 1.07e-43 1 ALDOB adjusted P-val < 0.01 DOWN
>
绘制图形
- 利用bardata绘制背景柱状图
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8)

- 添加上散点图, 黑色点有点少了,
不过无所谓能看到就行
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black"))

- 添加注释方块
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector)

- 给想要展示的基因和注释方块添加文字
- 看着有点挤, 点击zoom放大就好了
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector) +geom_text(aes(y = 0, label = cluster)) +geom_text_repel(data = deg %>% filter(gene %in% unique(tagedgene$gene)),aes(label = gene), position = position_jitter(seed = 0328),arrow = arrow(angle = 30, length = unit(0.05, "inches"),ends = "last", type = "open"))

- 最后处理一下背景啥的
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector) +geom_text(aes(y = 0, label = cluster)) +geom_text_repel(data = deg %>% filter(gene %in% unique(tagedgene$gene)),aes(label = gene), position = position_jitter(seed = 0328),arrow = arrow(angle = 30, length = unit(0.05, "inches"),ends = "last", type = "open")) +theme_minimal() +theme(axis.line.y = element_line(color = "black", linewidth = 1),axis.line.x = element_blank(),axis.text.x = element_blank(),panel.grid = element_blank(),legend.title = element_blank())

是不是很简单啊 😃
其实不只是单细胞, RNAseq等技术的差异基因也可以组合成类似的矩阵之后绘制相同的多组差异火山图. 理解这个图是柱状图和散点图的结合就可以灵活的绘制类似的图啦 😃
相关文章:
Cell 文章图复现
多组差异火山图复现 参考文章: A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart Figure 2. H 图里主要是单细胞数据不同cluster之间的差异火山图, 所以说白了就是散点图和柱状图的结合, 散点图用差异基因绘制, 柱状图利用logFC最…...
只需一招彻底解决SOLIDWORKS不显示缩略图预览
SOLIDWORKS缩略图能够让工程师便于识别想要打开的模型,但经常会有用户遇到在资源管理器中查看SOLIDWORKS文件时,仅显示SOLIDWORKS的图标,而没有相关文件的预览缩略图。 Windows文件夹选项设置 首先确保Windows文件夹选项设置,显…...
nccl 源码分析 从 ncclAllReduce 的执行开始认识nccl源代码
文字没有提及的代码内容,不需要太在意,当然也可以瞟两眼; 首先,总体而言函数 ncclAllReduce 的功能在于将携带了一个操作的info结构体,放入了队列中,待后面执行; 排队的函数调用是 ncclEnqueue…...
仿照AirDrop(隔空投送)优雅地在局域网中传输文件
基于WebRTC的局域网文件传输 在前一段时间,我想在手机上向电脑发送文件,因为要发送的文件比较多,所以我想直接通过USB连到电脑上传输,等我将手机连到电脑上之后,我发现手机竟然无法被电脑识别,能够充电但是…...
【PHP】TP5.0及Fastadmin中将查询数据返回对象转为数组
目录 方法一:使用collection助手函数 方法二:设置返回数据集的对象名 在 ThinkPHP 5.0 中,对模型查询返回的对象进行了优化,默认情况下,使用 all 或 select 方法查询数据库将返回一个对象数组集合。这个集合是模型的…...
大公司里怎样开发和部署前端代码?
前端训练营:1v1私教,终身辅导计划,帮你拿到满意的 offer。 已帮助数百位同学拿到了中大厂 offer。欢迎来撩~~~~~~~~ Hello,大家好,我是 Sunday。 昨天的时候有同学问到前端部署相关的内容,正好在知乎中看到…...
API接口:原理、设计与实践
一、引言 随着互联网的发展,应用程序之间的交互变得越来越频繁,API接口成为了不同应用程序之间进行数据交换的重要手段。本文将详细介绍API接口的原理、设计与实践,以期帮助读者更好地理解和应用这一技术。 二、API接口概述 API࿰…...
2023年TIOBE指数TOP50的编程语言写“Hello World!”
这篇文章列出了TIOBE指数TOP50的编程语言(TIOBE Index - TIOBE)如何写“Hello World!”。“Hello World!”代码应该是每个程序员学习一门编程语言最先实现的程序,给我们带来了很多美好的回忆,下面我们就一次…...
spring、springmvc、springboot、springcloud简介
spring简介 spring是什么? spring: 春天spring: 轻量级的控制反转和面向切面编程的框架 历史 2002年,首次推出spring雏形,interface 21框架2004年,发布1.0版本Rod Johnson: 创始人,悉尼大学,音乐学博士…...
立仪科技光谱共焦位移传感器:应用领域的广泛性
在科技日新月异的今天,光谱共焦位移传感器以其精确、稳定的特性,在各个领域得到了广泛的应用。本文将详细介绍光谱共焦位移传感器的应用情况,以期让大家对其有更深入的了解。我们来理解一下什么是光谱共焦位移传感器。 它是一种通过测量物体表…...
neo4j图数据库安装和测试
neo4j图数据库安装和测试 1. 下载合适的neo4j软件版本。 https://we-yun.com/doc/neo4j/ https://neo4j.com/deployment-center/#enterprise 2. 下载JAVAJDK 由于neo4j是一个用Java编写的图形数据库,因此在安装和运行Neo4j之前,需要先安装Java Developm…...
爬取豆瓣电影top250的电影名称(完整代码与解释)
在爬取豆瓣电影top250的电影名称之前,需要在安装两个第三方库requests和bs4,方法是在终端输入: pip install requestspip install bs4 截几张关键性图片: 豆瓣top250电影网页 运行结果 测试html文件标签的各个方法的作用…...
tidb 集成 flyway 报错 denied to user for table global_variables
报错内容: Caused by: java.sql.SQLException: connection disabled at com.alibaba.druid.pool.DruidPooledConnection.checkStateInternal(DruidPooledConnection.java:1181) at com.alibaba.druid.pool.DruidPooledConnection.checkState(DruidPooledConnection.jav…...
很实用的ChatGPT网站—在线编程模块增补篇
很实用的ChatGPT网站(http://chat-zh.com/)——增补篇 今天介绍一个好兄弟开发的ChatGPT网站,网址[http://chat-zh.com/]。这个网站功能模块很多,包含生活、学习、医疗、法律、经济等很多方面。今天跟大家分享一下,新…...
A股风格因子看板 (2024.01第01期)
该因子看板跟踪A股风格因子,该因子主要解释沪深两市的市场收益、刻画市场风格趋势的系列风格因子,用以分析市场风格切换、组合风格暴 露等。 今日为该因子跟踪第1期,指数组合数据截止日2024-12-01,要点如下 近1年A股风格因子检验统…...
基于gamma矫正的照片亮度调整(python和opencv实现)
import cv2 import numpy as npdef adjust_gamma(image, gamma1.0):invGamma 1.0 / gammatable np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")return cv2.LUT(image, table)# 读取图像 original cv2.imread("tes…...
LeetCode-Java(29)
29. 两数相除 结果肯定落在dividend上,于是对这个区间每一个数进行二分查找,判断方法就是 while (l < r) {long mid l r 1 >> 1;if (mul(mid, y) < x) {l mid;} else {r mid - 1;}} 其中mul是一个要定义的快速乘法。 完整代码如下 …...
腾讯云导入导出镜像官方文档
制作与导出 Linux 镜像 https://cloud.tencent.com/document/product/213/17814 制作与导出 Windows 镜像 https://cloud.tencent.com/document/product/213/17815 云服务器 导出镜像-操作指南-文档中心-腾讯云 (tencent.com) 轻量应用服务器 管理共享镜像-操作指…...
keras 深度学习框架实现 手写数字识别
阅读本文之前,请先参考--------win10搭建keras深度学习框架 安装运行环境 阅读本文之前,请先参考--------keras人工智能框架 MNIST 数据集 随机展示 查看训练图片 完整代码如下图: 在sublimeText中 使用ctrlB运行代码,结果如…...
SELinux策略语法以及示例策略
首发公号:Rand_cs 本文来讲述 SELinux 策略常用的语法,然后解读一下 SELinux 这个项目中给出的示例策略 安全上下文 首先来看一下安全上下文的格式: user : role : type : level每一个主体和客体都有一个安全上下文,通常也称安…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
