Cell 文章图复现
多组差异火山图复现
参考文章: A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart Figure 2. H

图里主要是单细胞数据不同cluster之间的差异火山图, 所以说白了就是散点图和柱状图的结合, 散点图用差异基因绘制, 柱状图利用logFC最大最小值绘制就完了.
加载包
> library(tidyverse)
> library(ggplot2)
> library(ggpubr)
> library(RColorBrewer)
> library(openxlsx)
> library(ggsci)
> library(ggrepel)
> # Create color parameters
> qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
> col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
>
读取数据
> deg <- read.csv("./Differentially_Expressed_Markers_Each_Cluster.csv", header = T)
> deg$cluster <- as.factor(deg$cluster)
> head(deg)X p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
1 1 0 2.558924 0.982 0.289 0 0 DEFB1
2 2 0 2.365316 0.963 0.220 0 0 HMGCS2
3 3 0 2.317304 0.991 0.513 0 0 ATP1B1
4 4 0 2.207154 0.963 0.231 0 0 AC015522.1
5 5 0 2.153153 0.912 0.244 0 0 HSD11B2
6 6 0 2.125726 0.811 0.209 0 0 PAPPA2
> deg <- deg %>% dplyr::filter(p_val_adj < 0.05) %>%
+ dplyr::filter(abs(avg_log2FC) > 0.75) %>%
+ dplyr::select(avg_log2FC, p_val_adj, cluster, gene) # filter and tidy the matrix
>
添加一些注释信息, 例如legend, 上下调, 需要显示名称的基因等
> deg <- deg %>%
+ mutate(label = ifelse(p_val_adj < 0.01, "adjusted P-val < 0.01", "adjusted P-val >= 0.01")) %>%
+ mutate(Change = ifelse(avg_log2FC > 0.75, "UP", "DOWN"))
>
> bardata <- deg %>% dplyr::select(cluster, avg_log2FC ) %>%
+ group_by(cluster) %>%
+ summarise_all(list(tail = min, top = max)) #
> head(bardata)
# A tibble: 6 × 3cluster tail top<fct> <dbl> <dbl>
1 0 -5.61 2.56
2 1 -5.13 4.32
3 2 -5.46 2.53
4 3 -4.84 4.81
5 4 -5.60 3.97
6 5 -4.59 2.96
>
> tagedgene <- deg %>% group_by(cluster) %>%
+ slice_max(abs(avg_log2FC), n = 3)
> head(tagedgene)
# A tibble: 6 × 6
# Groups: cluster [2]avg_log2FC p_val_adj cluster gene label Change<dbl> <dbl> <fct> <chr> <chr> <chr>
1 -5.61 0 0 ALDOB adjusted P-val < 0.01 DOWN
2 -5.46 0 0 HSPA1A adjusted P-val < 0.01 DOWN
3 -5.09 0 0 GPX3 adjusted P-val < 0.01 DOWN
4 -5.13 0 1 DEFB1 adjusted P-val < 0.01 DOWN
5 -4.61 0 1 CRYAB adjusted P-val < 0.01 DOWN
6 -4.36 1.07e-43 1 ALDOB adjusted P-val < 0.01 DOWN
>
绘制图形
- 利用bardata绘制背景柱状图
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8)

- 添加上散点图, 黑色点有点少了,
不过无所谓能看到就行
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black"))

- 添加注释方块
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector)

- 给想要展示的基因和注释方块添加文字
- 看着有点挤, 点击zoom放大就好了
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector) +geom_text(aes(y = 0, label = cluster)) +geom_text_repel(data = deg %>% filter(gene %in% unique(tagedgene$gene)),aes(label = gene), position = position_jitter(seed = 0328),arrow = arrow(angle = 30, length = unit(0.05, "inches"),ends = "last", type = "open"))

- 最后处理一下背景啥的
ggplot(deg, aes(x = cluster, y = avg_log2FC ))+geom_col(data = bardata, mapping = aes(x = cluster, y = tail),fill = "grey", width = 0.8) +geom_col(data = bardata, mapping = aes(x = cluster, y = top),fill = "grey", width = 0.8) +geom_jitter(aes(color = label), size = 1,position = position_jitter(seed = 0328)) +scale_color_manual(values = c("#db5a6b", "black")) +geom_tile(aes(y = 0, fill = cluster), show.legend = F, color = "black", width = 1) +scale_fill_manual(values = col_vector) +geom_text(aes(y = 0, label = cluster)) +geom_text_repel(data = deg %>% filter(gene %in% unique(tagedgene$gene)),aes(label = gene), position = position_jitter(seed = 0328),arrow = arrow(angle = 30, length = unit(0.05, "inches"),ends = "last", type = "open")) +theme_minimal() +theme(axis.line.y = element_line(color = "black", linewidth = 1),axis.line.x = element_blank(),axis.text.x = element_blank(),panel.grid = element_blank(),legend.title = element_blank())

是不是很简单啊 😃
其实不只是单细胞, RNAseq等技术的差异基因也可以组合成类似的矩阵之后绘制相同的多组差异火山图. 理解这个图是柱状图和散点图的结合就可以灵活的绘制类似的图啦 😃
相关文章:
Cell 文章图复现
多组差异火山图复现 参考文章: A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart Figure 2. H 图里主要是单细胞数据不同cluster之间的差异火山图, 所以说白了就是散点图和柱状图的结合, 散点图用差异基因绘制, 柱状图利用logFC最…...
只需一招彻底解决SOLIDWORKS不显示缩略图预览
SOLIDWORKS缩略图能够让工程师便于识别想要打开的模型,但经常会有用户遇到在资源管理器中查看SOLIDWORKS文件时,仅显示SOLIDWORKS的图标,而没有相关文件的预览缩略图。 Windows文件夹选项设置 首先确保Windows文件夹选项设置,显…...
nccl 源码分析 从 ncclAllReduce 的执行开始认识nccl源代码
文字没有提及的代码内容,不需要太在意,当然也可以瞟两眼; 首先,总体而言函数 ncclAllReduce 的功能在于将携带了一个操作的info结构体,放入了队列中,待后面执行; 排队的函数调用是 ncclEnqueue…...
仿照AirDrop(隔空投送)优雅地在局域网中传输文件
基于WebRTC的局域网文件传输 在前一段时间,我想在手机上向电脑发送文件,因为要发送的文件比较多,所以我想直接通过USB连到电脑上传输,等我将手机连到电脑上之后,我发现手机竟然无法被电脑识别,能够充电但是…...
【PHP】TP5.0及Fastadmin中将查询数据返回对象转为数组
目录 方法一:使用collection助手函数 方法二:设置返回数据集的对象名 在 ThinkPHP 5.0 中,对模型查询返回的对象进行了优化,默认情况下,使用 all 或 select 方法查询数据库将返回一个对象数组集合。这个集合是模型的…...
大公司里怎样开发和部署前端代码?
前端训练营:1v1私教,终身辅导计划,帮你拿到满意的 offer。 已帮助数百位同学拿到了中大厂 offer。欢迎来撩~~~~~~~~ Hello,大家好,我是 Sunday。 昨天的时候有同学问到前端部署相关的内容,正好在知乎中看到…...
API接口:原理、设计与实践
一、引言 随着互联网的发展,应用程序之间的交互变得越来越频繁,API接口成为了不同应用程序之间进行数据交换的重要手段。本文将详细介绍API接口的原理、设计与实践,以期帮助读者更好地理解和应用这一技术。 二、API接口概述 API࿰…...
2023年TIOBE指数TOP50的编程语言写“Hello World!”
这篇文章列出了TIOBE指数TOP50的编程语言(TIOBE Index - TIOBE)如何写“Hello World!”。“Hello World!”代码应该是每个程序员学习一门编程语言最先实现的程序,给我们带来了很多美好的回忆,下面我们就一次…...
spring、springmvc、springboot、springcloud简介
spring简介 spring是什么? spring: 春天spring: 轻量级的控制反转和面向切面编程的框架 历史 2002年,首次推出spring雏形,interface 21框架2004年,发布1.0版本Rod Johnson: 创始人,悉尼大学,音乐学博士…...
立仪科技光谱共焦位移传感器:应用领域的广泛性
在科技日新月异的今天,光谱共焦位移传感器以其精确、稳定的特性,在各个领域得到了广泛的应用。本文将详细介绍光谱共焦位移传感器的应用情况,以期让大家对其有更深入的了解。我们来理解一下什么是光谱共焦位移传感器。 它是一种通过测量物体表…...
neo4j图数据库安装和测试
neo4j图数据库安装和测试 1. 下载合适的neo4j软件版本。 https://we-yun.com/doc/neo4j/ https://neo4j.com/deployment-center/#enterprise 2. 下载JAVAJDK 由于neo4j是一个用Java编写的图形数据库,因此在安装和运行Neo4j之前,需要先安装Java Developm…...
爬取豆瓣电影top250的电影名称(完整代码与解释)
在爬取豆瓣电影top250的电影名称之前,需要在安装两个第三方库requests和bs4,方法是在终端输入: pip install requestspip install bs4 截几张关键性图片: 豆瓣top250电影网页 运行结果 测试html文件标签的各个方法的作用…...
tidb 集成 flyway 报错 denied to user for table global_variables
报错内容: Caused by: java.sql.SQLException: connection disabled at com.alibaba.druid.pool.DruidPooledConnection.checkStateInternal(DruidPooledConnection.java:1181) at com.alibaba.druid.pool.DruidPooledConnection.checkState(DruidPooledConnection.jav…...
很实用的ChatGPT网站—在线编程模块增补篇
很实用的ChatGPT网站(http://chat-zh.com/)——增补篇 今天介绍一个好兄弟开发的ChatGPT网站,网址[http://chat-zh.com/]。这个网站功能模块很多,包含生活、学习、医疗、法律、经济等很多方面。今天跟大家分享一下,新…...
A股风格因子看板 (2024.01第01期)
该因子看板跟踪A股风格因子,该因子主要解释沪深两市的市场收益、刻画市场风格趋势的系列风格因子,用以分析市场风格切换、组合风格暴 露等。 今日为该因子跟踪第1期,指数组合数据截止日2024-12-01,要点如下 近1年A股风格因子检验统…...
基于gamma矫正的照片亮度调整(python和opencv实现)
import cv2 import numpy as npdef adjust_gamma(image, gamma1.0):invGamma 1.0 / gammatable np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")return cv2.LUT(image, table)# 读取图像 original cv2.imread("tes…...
LeetCode-Java(29)
29. 两数相除 结果肯定落在dividend上,于是对这个区间每一个数进行二分查找,判断方法就是 while (l < r) {long mid l r 1 >> 1;if (mul(mid, y) < x) {l mid;} else {r mid - 1;}} 其中mul是一个要定义的快速乘法。 完整代码如下 …...
腾讯云导入导出镜像官方文档
制作与导出 Linux 镜像 https://cloud.tencent.com/document/product/213/17814 制作与导出 Windows 镜像 https://cloud.tencent.com/document/product/213/17815 云服务器 导出镜像-操作指南-文档中心-腾讯云 (tencent.com) 轻量应用服务器 管理共享镜像-操作指…...
keras 深度学习框架实现 手写数字识别
阅读本文之前,请先参考--------win10搭建keras深度学习框架 安装运行环境 阅读本文之前,请先参考--------keras人工智能框架 MNIST 数据集 随机展示 查看训练图片 完整代码如下图: 在sublimeText中 使用ctrlB运行代码,结果如…...
SELinux策略语法以及示例策略
首发公号:Rand_cs 本文来讲述 SELinux 策略常用的语法,然后解读一下 SELinux 这个项目中给出的示例策略 安全上下文 首先来看一下安全上下文的格式: user : role : type : level每一个主体和客体都有一个安全上下文,通常也称安…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...
Linux操作系统共享Windows操作系统的文件
目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项,设置文件夹共享为总是启用,点击添加,可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download(这是我共享的文件夹)&…...
