当前位置: 首页 > news >正文

数模学习day06-主成分分析

        主成分分析(Principal Component Analysis,PCA)主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说当研究的问题涉及到多变量且变量之间存在很强的相关性时我们可考虑使用主成分分析的方法来对数据进行简化。


问题引出

        在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的.
        因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?
        事实上,这种想法是可以实现的,主成分分析方法就是综合处理这种问题的一种强有力的工具。
        主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术

数据降维的作用

        降维是将高维度的数据 (指标太多) 保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。
        在实际的生产和应用中,降维在一定的信息损失范围内可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。


降维具有如下一些优点:
(1)使得数据集更易使用

(2)降低算法的计算开销

(3)去除噪声

(4)使得结果容易理解


例子


主成分分析的

思想


 


计算步骤

 


例题一

相关系数矩阵可以使用  corrcoef 这个函数计算

表中可以看到前三个主成分的累计贡献率达85.9%,因此可以考虑只取前面三个主成分,它们能够很好的概括原式变量。


例题二

这里为什么上半部分是空白的呢,是因为这个样本相关系数矩阵是一个对称的矩阵,所以是空白的。

然后就是计算相关的关键变量.

只要前两项贡献率已经达到了90%多了,所以后面的已经不重要了了。

然后重点就是如何解释主成分了。

由上表可知,前两个主成分的累计贡献率已高达93.7%,第一主成分F1在所有变量上有几乎相等的正载荷,可称为在径赛项目上的强弱成分第二主成分F2在各个指标上的载荷基本上逐个递减,反映了速度与耐力成绩的对比。


MATLAB代码实现

lambda = lambda(end:-1:1)

从大到小排序

V=rot90(V)';
disp(V)
将列的顺序调换

clear;clc
load data1.mat   % 主成分聚类
%  load data2.mat   % 主成分回归% 注意,这里可以对数据先进行描述性统计
% 描述性统计的内容见第5讲.相关系数,该文章还未更新
[n,p] = size(x);  % n是样本个数,p是指标个数%% 第一步:对数据x标准化为X
X=zscore(x);   % matlab内置的标准化函数(x-mean(x))/std(x)%% 第二步:计算样本协方差矩阵
R = cov(X);%% 注意:以上两步可合并为下面一步:直接计算样本相关系数矩阵
R = corrcoef(x);
disp('样本相关系数矩阵为:')
disp(R)%% 第三步:计算R的特征值和特征向量
% 注意:R是半正定矩阵,所以其特征值不为负数
% R同时是对称矩阵,Matlab计算对称矩阵时,会将特征值按照从小到大排列哦
% eig函数的详解见第一讲层次分析法的视频
[V,D] = eig(R);  % V 特征向量矩阵  D 特征值构成的对角矩阵%% 第四步:计算主成分贡献率和累计贡献率
lambda = diag(D);  % diag函数用于得到一个矩阵的主对角线元素值(返回的是列向量)
lambda = lambda(end:-1:1);  % 因为lambda向量是从小大到排序的,我们将其调个头
contribution_rate = lambda / sum(lambda);  % 计算贡献率
cum_contribution_rate = cumsum(lambda)/ sum(lambda);   % 计算累计贡献率  cumsum是求累加值的函数
disp('特征值为:')
disp(lambda')  % 转置为行向量,方便展示
disp('贡献率为:')
disp(contribution_rate')
disp('累计贡献率为:')
disp(cum_contribution_rate')
disp('与特征值对应的特征向量矩阵为:')
% 注意:这里的特征向量要和特征值一一对应,之前特征值相当于颠倒过来了,因此特征向量的各列需要颠倒过来
%  rot90函数可以使一个矩阵逆时针旋转90度,然后再转置,就可以实现将矩阵的列颠倒的效果
V=rot90(V)';
disp(V)%% 计算我们所需要的主成分的值
m =input('请输入需要保存的主成分的个数:  ');
F = zeros(n,m);  %初始化保存主成分的矩阵(每一列是一个主成分)
for i = 1:mai = V(:,i)';   % 将第i个特征向量取出,并转置为行向量Ai = repmat(ai,n,1);   % 将这个行向量重复n次,构成一个n*p的矩阵F(:, i) = sum(Ai .* X, 2);  % 注意,对标准化的数据求了权重后要计算每一行的和
end%% (1)主成分聚类 : 将主成分指标所在的F矩阵复制到Excel表格,然后再用Spss进行聚类
% 在Excel第一行输入指标名称(F1,F2, ..., Fm)
% 双击Matlab工作区的F,进入变量编辑中,然后复制里面的数据到Excel表格
% 导出数据之后,我们后续的分析就可以在Spss中进行。%%(2)主成分回归:将x使用主成分得到主成分指标,并将y标准化,接着导出到Excel,然后再使用Stata回归
% Y = zscore(y);  % 一定要将y进行标准化哦~
% 在Excel第一行输入指标名称(Y,F1, F2, ..., Fm)
% 分别双击Matlab工作区的Y和F,进入变量编辑中,然后复制里面的数据到Excel表格
% 导出数据之后,我们后续的分析就可以在Stata中进行。

然后就是解释

        从上表可以看出,前两个和前三个主成分的累计贡献率分别达到80.6%和87.8%,第一主成分F1在所有变量(除在x2上的载荷稍偏小外)上都有近似相等的正载荷,反映了综合消费性支出的水平,因此第一主成分可称为综合消费性支出成分。第二主成分F2在变量x2上有很高的正载荷,在变量x4上有中等的正载荷,而在其余变量上有负载荷或很小的正载荷。可以认为这个主成分度量了受地区气候影响的消费性支出(主要是衣着,其次是医疗保健 )在所有消费性支出中占的比重(也可理解为一种消费倾向),第二主成分可称为消费倾向成分。第三主成分很难给出明显的解释,因此我们只取前面两个主成分。


数据可视化

求出R之后将它粘贴到Excel表格中

然后调整行高到   50  这样就是方形的了

然后再选择条件格式

再选择色阶

再修改管理规则

点击编辑规则

再修改成这样就基本上是一个颜色了

样子如下

颜色越深相关系数越强


主成分分析的滥用:主成分得分


主成分分析用于聚类

(1)主成分聚类 : 将主成分指标所在的F矩阵复制到Excel表格,然后再用Spss进行聚类
在Excel第一行输入指标名称(F1,F2, ..., Fm)
双击Matlab工作区的F,进入变量编辑中,然后复制里面的数据到Excel表格
导出数据之后,我们后续的分析就可以在Spss中进行。

(2)主成分回归:将x使用主成分得到主成分指标,并将y标准化,接着导出到Excel,然后再使用Stata回归
Y = zscore(y);  % 一定要将y进行标准化哦~
在Excel第一行输入指标名称(Y,F1, F2, ..., Fm)
分别双击Matlab工作区的Y和F,进入变量编辑中,然后复制里面的数据到Excel表格
导出数据之后,我们后续的分析就可以在Stata中进行。
 

spss聚类操作

首先找到系统聚类

移动指标

加上谱系图

画图

通过这个图就可以大致看出聚类的效果


主成分回归

用于解决多重共线性的问题

问题1: 之前学过逐步回归,逐步回归也可以用来解决多重共线性问题,我该用逐步回归还是今天学习的主成分分析呢?如果你能够很好的解释清楚主成分代表的含义,那么我建议你在正文中既用主成分分析,又用逐步回归 (多分析点没啥坏处只要你能保证你不分析错就行),如果你解释不清楚,那么还是用逐步回归吧。
问题2: 主成分回归后,需要将原来的变量带回到回归方程吗?我觉得没必要,要是你带回去了,那和普通的回归有什么区别呢。主成分的核心作用就是降维,带回去了维度也没降下来呀

相关文章:

数模学习day06-主成分分析

主成分分析(Principal Component Analysis,PCA)主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说当研究的问题涉及到…...

Windows PowerShell的安全目标——安全警报

Windows PowerShell的安全目标——安全警报 1. 保证Shell安全 ​ 自从2006年年底PowerShell发布以来,微软在安全和脚本方面并没有取得很好的名声。毕竟那个时候,**VBScript和Windows Script Host(WSH)**是两个最流行的病毒和恶意软件的载体&#xff0c…...

k8s笔记1- 初步认识k8s

k8s简介: kubernetes,俗称k8是,用于自动部署,扩缩和管理容器化应用程序的开源系统,它将组成应用程序的容器,组合成逻辑单元,便于管理和服务发现。 k8s的作用 自动化上线和回滚、存储编排…...

ARM CCA机密计算软件架构之内存加密上下文(MEC)

内存加密上下文(MEC) 内存加密上下文是与内存区域相关联的加密配置,由MMU分配。 MEC是Arm Realm Management Extension(RME)的扩展。RME系统架构要求对Realm、Secure和Root PAS进行加密。用于每个PAS的加密密钥、调整或加密上下文在该PAS内是全局的。例如,对于Realm PA…...

python基于flask实现一个文本问答系统

from flask import Flask, render_template, requestapp Flask(__name__)# 一个简单的问题-答案映射,实际中可以使用更复杂的存储结构(数据库等) qa_pairs {"什么是人工智能?": "人工智能是模拟人类智能的一种机…...

lambda表达式使用和示例

lambda表达式 什么是lambda 学习lamdba有两个结构十分关键,一个是lamdba自己,另一个是函数式接口 lamdba lamdba表达式本质上就是匿名方法,不能独立运行用于实现函数式接口定义的另一个方法,因此lamdba会产生一个匿名类lamdba…...

STM32学习笔记十八:WS2812制作像素游戏屏-飞行射击游戏(8)探索游戏多样性,范围伤害模式

前面我们的攻击手段比较单一,虽然已经分出了 EnemyT1 / EnemyT2 / EnemyT3, 但里面还是基本一样的。这回,我们尝试实现一些新的攻击方法,实现一些新的算法。 1、前面我们小飞机EnemyT1 的攻击方式是垂直向下发射子弹。 那么大飞机…...

C#获取windows系统资源使用情况

1.前言 之前有一篇博客介绍如何获取Linux服务器上的资源使用情况《Java 获取服务器资源(内存、负载、磁盘容量)》,这里介绍如何通过C#获取Window系统的资源使用。 2.获取服务器资源 2.1.内存 [DllImport("kernel32.dll")][retu…...

PE解释器之PE文件结构

PE文件是由许许多多的结构体组成的,程序在运行时就会通过这些结构快速定位到PE文件的各种资源,其结构大致如图所示,从上到下依次是Dos头、Nt头、节表、节区和调试信息(可选)。其中Dos头、Nt头和节表在本文中统称为PE文件头(因为SizeOfHeaders…...

Android—— MIPI屏调试

一、实现步骤 1、在kernel/arch/arm/boot/dts/lcd-box.dtsi文件中打开&dsi0节点,关闭其他显示面板接口(&edp_panel、&lvds_panel) --- a/kernel/arch/arm/boot/dts/lcd-box.dtsib/kernel/arch/arm/boot/dts/lcd-box.dtsi-5,14 …...

BLE协议—协议栈基础

BLE协议—协议栈基础 BLE协议栈基础通用访问配置文件层(Generic Access Profile,GAP)GAP角色设备配置模式和规程安全模式广播和扫描 BLE协议栈基础 蓝牙BLE协议栈包含三部分:主机、主机接口层和控制器。 主机:逻辑链路…...

yolov8知识蒸馏代码详解:支持logit和feature-based蒸馏

文章目录 1. 知识蒸馏理论2. yolov8 蒸馏代码应用2.1 环境配置2.2 训练模型(1) 训练教师模型(2) 训练学生模型baseline(3) 蒸馏训练3. 知识蒸馏代码详解3.1 蒸馏参数设置3.2 蒸馏损失代码讲解3.2.1 Feature based loss3.2.1 Logit loss3.3 获取蒸馏的feature map及channels...

03-微服务-Ribbon负载均衡

Ribbon负载均衡 1.1.负载均衡原理 SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。 那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢? 1.2.源码跟踪 为什么我们只输入…...

2023新年总结与展望

2023年总结 对Spring Cloud微服务更加熟悉,对consul、kafka、gateway的熟悉和掌握更近一步对docker和虚拟化部署更加熟悉对PostgreSQL数据库和JPA更加熟悉对clickhouse数据库和大数据分析更加熟悉对netty和socket网络通信更加熟悉 2024年flag 继续深入研究和学习…...

论文阅读——SG-Former

SG-Former: Self-guided Transformer with Evolving Token Reallocation 1. Introduction 方法的核心是利用显著性图,根据每个区域的显著性重新分配tokens。显著性图是通过混合规模的自我关注来估计的,并在训练过程中自我进化。直观地说,我们…...

常用环境部署(十三)——GitLab整体备份及迁移

一、GitLab备份 注意:由于我的GitLab是docker安装的,所以我的操作都是在容器内操作的,大家如果不是用docker安装的则直接执行命令就行。 1、Docker安装GitLab 链接:常用环境部署(八)——Docker安装GitLab-CSDN博客 2、GitLab备…...

海外数据中心代理与住宅代理:优缺点全面对比

数据中心代理和住宅代理是为了匿名而开发的,通过替换网站眼中您自己的 IP 地址。然而,它们在价格、功能、性能或最佳用例方面存在一些差异。那么,这些代理类型到底有什么相似点和不同点呢? 一、什么是数据中心代理? 1…...

springboot实现OCR

1、引入依赖 <dependency><groupId>net.sourceforge.tess4j</groupId><artifactId>tess4j</artifactId><version>4.5.4</version> </dependency> 2、config Configuration public class TessOcrConfiguration {Beanpublic …...

【Scala 】注解

在 Scala 中&#xff0c;你可以使用注解来为类、方法或字段添加元数据&#xff0c;影响它们的行为。Scala 的注解使用与 Java 类似&#xff0c;但是 Scala 也支持自定义注解。 文章目录 注解的常见使用方法自定义注解 注解的常见使用方法 以下是一些 Scala 中常见的注解以及它…...

数通基础知识总结

1. 基础概念 1.1. 通信基本原理 通信基本原理涉及信息的生成、编码、传输和解码的过程。在实际应用中&#xff0c;例如电话通信&#xff0c;信息通过话筒转换成模拟信号&#xff0c;经过传输线路传递到接收端&#xff0c;再由耳机解码还原为可理解的信息。 1.2. 信道和信号 …...

机器学习深度学习面试笔记

机器学习&深度学习面试笔记 机器学习Q. 在线性回归中&#xff0c;如果自变量之间存在多重共线性&#xff0c;会导致什么问题&#xff1f;如何检测和处理多重共线性&#xff1f;Q. 什么是岭回归(Ridge Regression)和Lasso回归(Lasso Regression)&#xff1f;它们与普通线性回…...

安卓和Android是两种不同的操作系统?

实际上&#xff0c;安卓和Android并不是同一种操作系统&#xff01; Android是由Google开发并维护更新的一款操作系统&#xff0c;目前仅能运行在Pixel手机上。 Google Pixel 与 iPhone手机&#xff1a;哪个更好&#xff1f;Google Pixel 与 Apple iPhone哪个手机才是性价比最…...

Java学习——设计模式——结构型模式2

文章目录 结构型模式装饰者模式桥接模式外观模式组合模式享元模式 结构型模式 结构型模式主要涉及如何组合各种对象以便获得更好、更灵活的结构。虽然面向对象的继承机制提供了最基本的子类扩展父类的功能&#xff0c;但结构型模式不仅仅简单地使用继承&#xff0c;而更多地通过…...

什么是Maven ??? (以及关于依赖,中央仓库,国内源)

文章目录 什么是 Maven创建第一个 Maven 项目依赖管理Maven 的仓库Maven 如何设置国内源 什么是 Maven Maven &#xff1a;用于构建和管理任何基于java的项目的工具。**说白了就是管理 Java项目 的工具。**我们希望我们已经创建了一些东西&#xff0c;可以使Java开发人员的日常…...

c++期末考题笔试来咯

最后一道大题题目再现 写一个person类&#xff0c;有姓名&#xff0c;性别&#xff0c;年龄。然后在此基础上派生出教师类和学生类。教师类增加了以下数据&#xff1a;工号&#xff0c;职称&#xff0c;工资。学生类增加了以下数据成员&#xff1a;学号&#xff0c;专业&#…...

目标检测篇:如何根据xml标注文件生成类别classes的json文件

1. 介绍 之前在做目标检测任务的时候&#xff0c;发现很多的数据集仅有数据(只有图片标注的xml文件)&#xff0c;没有关于类别的json文件&#xff0c;为了以后方便使用&#xff0c;这里记录一下 一般来说&#xff0c;yolo标注的数据集&#xff0c;只有第一个是数字类别&#x…...

spring见解2基于注解的IOC配置

3.基于注解的IOC配置 学习基于注解的IOC配置&#xff0c;大家脑海里首先得有一个认知&#xff0c;即注解配置和xml配置要实现的功能都是一样的&#xff0c;都是要降低程序间的耦合。只是配置的形式不一样。 3.1.创建工程 3.1.1.pom.xml <?xml version"1.0" en…...

Uncaught TypeError: Cannot read property ‘snj‘ of null

项目场景&#xff1a; 项目相关背景&#xff1a; 调试项目时&#xff0c;控制台出现红色报错信息 问题描述 问题&#xff1a; 调试项目时&#xff0c;控制台出现如下所示的报错信息&#xff1a; Uncaught TypeError: Cannot read property snj of nullat T.Inj.Ya [as Inj…...

Jenkins基础教程

目录 第一章、快速了解Jenkins1.1&#xff09;Jenkins中一些概念介绍1.2&#xff09;Jenkins和maven用途上的区别1.3&#xff09;为什么使用Jenkins1.4&#xff09;学习过程中的疑问 第二章、安装Jenkins2.1&#xff09;安装之前的准备2.2&#xff09;Windows中Jenkins下载安装…...

嵌入式C语言--WatchDog最全概念

嵌入式C语言–WatchDog最全概念 嵌入式C语言--WatchDog最全概念 嵌入式C语言--WatchDog最全概念一. 什么是Watchdog1&#xff09;什么是“被狗咬”2&#xff09;什么是喂狗 二. 基本思想三. 作用四. 监视目标1) 监视一个进程2&#xff09;监视一个操作系统 五. 系统初始化时关闭…...

宁波网站制作哪家优惠多/做百度推广的公司电话号码

一般说来&#xff0c;大家认为线程池的大小经验值应该这样设置&#xff1a;&#xff08;其中N为CPU的个数&#xff09;如果是CPU密集型应用&#xff0c;则线程池大小设置为N1如果是IO密集型应用&#xff0c;则线程池大小设置为2N1如果一台服务器上只部署这一个应用并且只有这一…...

网站建设市场价/百度快照怎么发布

目标检测之YOLO V1简单总结前言训练预测缺点前言 《You Only Look Once:Unified, Real-Time Object Detection》 论文地址&#xff1a;http://arxiv.org/abs/1506.02640 作为单阶段的目标检测网路&#xff0c;YOLO的速度比fasterrcnn快得多&#xff0c;目前YOLO已经出到V5&am…...

大学生服装网站建设策划书/青岛网站制作设计

IDEA设置不需要重启Tomcat而更新代码&#xff08;热部署&#xff09;...

wordpress 获取主题路径/今日油价92汽油

关注“心仪脑”查看更多脑科学知识的分享。 许多研究者使用EEG这项技术开展科研工作时&#xff0c;经常会遇到这样一个问题&#xff1a;有很好的idea但苦于缺乏足够的数据支持和验证。尤其是在2019 - 2020年COVID-19期间&#xff0c;许多高校实验室处于封闭状态&#xff0c;不…...

企业网站制作及cms技术/线下推广方式

大多数计算机语言&#xff0c;有且仅有一个表示“无”的值&#xff0c;比如&#xff1a;C 语言的 NULL&#xff0c;Java 语言的 null&#xff0c;Python 语言的 None&#xff0c;Ruby 语言的 nil。但是在 JavaScript 中却同时存在 undefined 和 null&#xff0c;这主要是由于历…...

技术外包/东莞网站seo优化

一、简单工厂模式&#xff08;静态工厂模式&#xff09; 1、简单说明工厂模式&#xff1a;现在所谓的个性化定制就是一个很好的列子&#xff0c;比如你想买一辆与众不同的汽车&#xff0c; 你就去汽车生产厂家说你要什么样的汽车&#xff0c;之后他就会按你的要求给你生产你的…...