泊松分布与二项分布的可加性
泊松分布与二项分布的可加性
泊松分布的可加性
例 : 设 X , Y X,Y X,Y 相互独立 , X ∼ P ( λ 1 ) X\sim P(\lambda_1) X∼P(λ1) , Y ∼ P ( λ 2 ) Y\sim P(\lambda_2) Y∼P(λ2) , 求证 Z = X + Y Z=X+Y Z=X+Y 服从参数为 λ 1 + λ 2 \lambda_1 + \lambda_2 λ1+λ2 的泊松分布
证明 :
由题意 , X X X 的分布律为 P { X = i } = λ 1 i i ! e − λ 1 , i = 0 , 1 , 2 , ⋯ P\{X=i\}=\frac{\lambda_1^i}{i!}e^{-\lambda_1},i=0,1,2,\cdots P{X=i}=i!λ1ie−λ1,i=0,1,2,⋯
Y Y Y 的分布律为 P { Y = i } = λ 2 i i ! e − λ 2 , i = 0 , 1 , 2 , ⋯ P\{Y=i\}=\frac{\lambda_2^i}{i!}e^{-\lambda_2},i=0,1,2,\cdots P{Y=i}=i!λ2ie−λ2,i=0,1,2,⋯
Z Z Z 的可能取值为 0 , 1 , 2 , ⋯ 0,1,2,\cdots 0,1,2,⋯ , Z Z Z 的分布律为 P { Z = k } = P { X + Y = k } = ∑ i = 0 k P { X = i } P { Y = k − i } = ∑ i = 0 k λ 1 i λ 2 k − i i ! ( k − i ) ! e − λ 1 e − λ 2 = e − ( λ 1 + λ 2 ) k ! ∑ i = 0 k k ! λ 1 i λ 2 k − i i ! ( k − i ) ! = e − ( λ 1 + λ 2 ) k ! ∑ i = 0 k C k i λ 1 i λ 2 k − i = ( λ 1 + λ 2 ) k k ! e − ( λ 1 + λ 2 ) P\{Z=k\}=P\{X+Y=k\}=\sum_{i=0}^{k}P\{X=i\}P\{Y=k-i\}=\sum_{i=0}^k\frac{\lambda_1^i \lambda_2^{k-i}}{i!(k-i)!}e^{-\lambda_1}e^{-\lambda_2}=\frac{e^{-(\lambda_1+\lambda_2)}}{k!}\sum_{i=0}^k\frac{k!\lambda_1^i \lambda_2^{k-i}}{i!(k-i)!}=\frac{e^{-(\lambda_1+\lambda_2)}}{k!}\sum_{i=0}^{k}C_k^i\lambda_1^i\lambda_2^{k-i}=\frac{(\lambda_1+\lambda_2)^k}{k!}e^{-(\lambda_1+\lambda_2)} P{Z=k}=P{X+Y=k}=∑i=0kP{X=i}P{Y=k−i}=∑i=0ki!(k−i)!λ1iλ2k−ie−λ1e−λ2=k!e−(λ1+λ2)∑i=0ki!(k−i)!k!λ1iλ2k−i=k!e−(λ1+λ2)∑i=0kCkiλ1iλ2k−i=k!(λ1+λ2)ke−(λ1+λ2)
k = 0 , 1 , 2 , ⋯ k=0,1,2,\cdots k=0,1,2,⋯
二项分布的可加性
类似地,可以证明, X ∼ B ( n 1 , p ) , Y ∼ B ( n 2 , p ) X\sim B(n_1,p),Y\sim B(n_2,p) X∼B(n1,p),Y∼B(n2,p) , 则 Z = X + Y ∼ B ( n 1 + n 2 , p ) 则\,Z=X+Y \sim B(n_1+n_2,p) 则Z=X+Y∼B(n1+n2,p)
相关文章:
泊松分布与二项分布的可加性
泊松分布与二项分布的可加性 泊松分布的可加性 例 : 设 X , Y X,Y X,Y 相互独立 , X ∼ P ( λ 1 ) X\sim P(\lambda_1) X∼P(λ1) , Y ∼ P ( λ 2 ) Y\sim P(\lambda_2) Y∼P(λ2) , 求证 Z X Y ZXY ZXY 服从参数为 λ 1 λ 2 \lambda_1 \lambda_2 λ1λ2 …...
【PostgreSQL】约束-排他约束
【PostgreSQL】约束链接 检查 唯一 主键 外键 排他 排他约束 排他约束是一种数据库约束,用于确保某一列或多个列中的值在每一条记录中都是唯一的。这意味着任何两条记录都不能具有相同的值。 排他约束可以在数据库中创建唯一索引或唯一约束来实现。当尝试插入或更…...
Java重修第一天—学习数组
1. 认识数组 建议1.5倍速学习,并且关闭弹幕。 数组的定义:数组是一个容器,用来存储一批同种类型的数据。 下述图:是生成数字数组和字符串数组。 为什么有了变量还需要定义数组呢?为了解决在某些场景下,变…...
【C#】知识点实践序列之Lock的锁定代码块
大家好,我是全栈小5,欢迎来到《小5讲堂之知识点实践序列》文章。 2024年第1篇文章,此篇文章是C#知识点实践序列之Lock知识点,博主能力有限,理解水平有限,若有不对之处望指正! 本篇验证Lock锁定代…...
StringBad ditto (motto)
第12章 类和动态内存分配 StringBad ditto (motto): // calls StringBad (comst StringBad &) StringBad metoo - motto: // calls StringBad (const StringBad &) StringBad also StringBad (motto): // calls StringBad (const StringBad &) StringBad * pStri…...
Redis缓存击穿、缓存雪崩、缓存穿透
缓存击穿(某个热点key缓存失效) 概念 缓存中没有但数据库中有的数据,假如是热点数据,那key在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力增大和缓存雪崩的…...
【PCB专题】Allegro封装更新焊盘
在PCB封装的绘制中,有时会出现需要更新焊盘的情况。比如在制作封装的过程中发现焊盘做的不对而使用PAD_Designer重新更新了焊盘。 那在PCB中如何更新已经修改过的焊盘呢? 打开封装,选择Tools->Padstack->Refresh... 选择Refresh all …...
ES6之Reflect详解
✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…...
文件监控-IT安全管理软件
文件监控和IT安全管理软件是用于保护企业数据和网络安全的工具。这些工具可以帮助企业监控文件的变化,防止未经授权的访问和修改,并确保数据的安全性和完整性。 一、具有哪些功能 文件监控软件可以实时监控文件系统的活动,包括文件的创建、修…...
达梦数据库安装超详细教程(小白篇)
文章目录 达梦数据库一、达梦数据库简介二、达梦数据库下载三、达梦数据库安装1. 解压2. 安装 四、初始化数据库五、DM管理工具 达梦数据库 一、达梦数据库简介 达梦数据库管理系统是达梦公司推出的具有完全自主知识产权的高性能数据库管理系统,简称DM。 达梦数…...
复试 || 就业day09(2024.01.04)算法篇
文章目录 前言验证外星语词典在长度 2N 的数组中找出重复 N 次的元素找到小镇的法官查找共用字符数组的相对排序分发饼干分发糖果区间选点(AcWing)最大不相交区间数量(AcWing)无重叠区间关于重写小于号 前言 💫你好,我是辰chen,本文旨在准备考…...
Win10电脑关闭OneDrive自动同步的方法
在Win10电脑操作过程中,用户想要关闭OneDrive的自动同步功能,但不知道具体要怎么操作?首先用户需要打开OneDrive,然后点击关闭默认情况下将文档保存到OneDrive选项保存,最后关闭在这台电脑上同步设置保存就好了。接下来…...
linux(centos)相关
文件架构: bin--binary--二进制命令,可直接执行 sbin systembin系统二进制命令,超级管理员 lib 库目录 类似dll文件 lib64 64位系统相关的库文件 usr 用户文件 boot 引导分区的文件,链接,系统启动等 dev device设备目录…...
外贸网站显示不安全警告怎么办?消除网站不安全警告超全指南
外贸网站显示不安全警告怎么办?当用户访问你的网站,而您的网站没有部署SSL证书实现HTTPS加密时,网站就会显示不安全警告,这种警告,不仅有可能阻止用户继续浏览网站,影响网站声誉,还有可能影响网…...
Java:HeapMemory和DirectMemory配置与使用介绍
目录 一、Heap内存 1、查看Heap内存配置的最大值 2、配置Heap内存最大值的方式 3、配置Heap内存最小值的方式 4、查看已使用Heap内存的方式 5、查看未使用Heap内存的方式 二、Direct内存 1、查看Direct内存配置的最大值 2、配置Direct内存最大值的方式 3、获取Direct…...
记 -bash: docker-compose: command not found 的问题解决
docker-compose: command not found 错误表明系统无法找到 docker-compose 命令。这可能是因为 docker-compose 并未正确安装,或者其可执行文件的路径未包含在系统的 PATH 变量中。 以下是我遇到时解决方法: 确保 Docker 和 Docker Compose 已安装&…...
分享10篇优秀论文,涉及图神经网络、大模型优化、表格分析
引言 第38届AAAI人工智能年度会议将于2024年2月在加拿大温哥华举行。今天给大家分享十篇AAAI2024论文,主要涉及图神经网络,大模型幻觉、中文书法文字生成、表格数据分析、KGs错误检测、多模态Prompt、思维图生成等。 论文获取方式,回复&am…...
Ubuntu 24.04 Preview 版安装 libtinfo5
Ubuntu 24.04 Preview 版安装 libtinfo5 0. 背景1. 安装 libtinfo52. 安装 cuda 0. 背景 Ubuntu 24.04 Preview 版安装 Cuda 时报确实 libtinfo5 的错误。 1. 安装 libtinfo5 wget http://archive.ubuntu.com/ubuntu/pool/universe/n/ncurses/libtinfo5_6.4-2_amd64.deb dpk…...
Spring AOP<一>简介与基础使用
spring AOP 基础定义 含义使用切面组织多个Advice,Advice放在切面中定义。也就是说是定义通知的自定义类。自定义的AOP类Aspect连接点方法调用,异常抛出可以增强的点JoinPoint :也就是**被增强的方法的总称,可以获取具体方法的信息ÿ…...
react ant tree节点没有children也会显示展开框 节点有children却不显示展开框
1.背景 最近处理树状结构时遇到了一个诡异问题,后端返回了组织树,组织树里面可能有组织,也可能有用户,很奇怪的是所有用户都会显示展开图标,而组织有些会显示展开图标,有些不会显示 2.分析 一开始找到了用…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
