当前位置: 首页 > news >正文

感知与认知的碰撞,大模型时代的智能文档处理范式

目录

  • 0 写在前面
  • 1 GPT4-V:拓宽文档认知边界
  • 2 大语言模型的文档感知缺陷
  • 3 大一统文档图像处理范式
    • 3.1 像素级OCR任务
    • 3.2 OCR大一统模型
    • 3.3 长文档理解与应用
  • 4 总结
  • 抽奖福利

0 写在前面

由中国图象图形学学会青年工作委员会发起的第十九届中国图象图形学学会青年科学家会议于2023年12月28-31日在中国广州召开。会议面向国际学术前沿与国家战略需求,聚焦最新前沿技术和热点领域,邀请了学术界和企业界专家与青年学者进行深度交流,促进图象图形领域“产学研”合作。

随着信息技术的发展和应用场景的不断扩大,人们需要处理和利用大量的文档信息。而传统的手动处理方法效率低下,无法满足现代生活和工作的需求。文档图像智能分析与处理就是一个重要且极具挑战性的研究问题。虽然文档图像分析已经有了将近一百年的历史,但是到目前为止仍有大量的问题没有得到很好地解决,例如文档的多样性和复杂性问题:文档类型和格式繁多,包括报告、合同、发票、证明、证件等等。不同类型的文档有不同的格式和布局,难以用统一的方法处理。而且智能文档处理受到图像质量、文字字体、文字大小、文字颜色等噪声因素的影响,容易出现误识别。此外,图像质量不一、文档获取繁琐等问题,依旧是行业顽疾。

合合信息作为文档图像处理领域的代表性科技企业,在本次会议中分享了大模型时代下,智能文档图像处理研究范式的相关启发性思考。大语言模型的快速发展,能否和传统方法相结合,发挥出更强大的优势,注入更鲜活的生命力呢?合合信息智能技术平台事业部副总经理、高级工程师丁凯博士对此进行了进一步的探讨和分析,相信对这个领域感兴趣的同学一定有所收获,接下来就让我们一起看看吧!

1 GPT4-V:拓宽文档认知边界

大型语言模型(LLMs)在各种领域和任务中表现出了显著的多功能性和能力。下一步的发展是大型多模态模型(LMMs),它们通过整合多感官技能来扩展LLMs的能力,以实现更强的通用智能。考虑到视觉在人类感官中的主导地位,许多LMM研究从扩展视觉能力开始。GPT-4V(ision)是OpenAI在2023年9月25日为ChatGPT增加的新特性,其中的V意味着GPT-4将更加注重视觉理解,GPT-4将具备更多的输入形式,使得用户可以通过包括文本、图像、声音等多种数据类型与GPT4进行交互,并且GPT-4能够进行更加复杂的推理和逻辑推导。同时,这也标志着GPT4正式成为一个多模态模型。

在这里插入图片描述

图源网络,侵删

丁凯博士首先介绍了GPT4-V强大的认知能力,相对于传统方法,大语言模型具备强大的上下文理解性能,可以根据文档中的文字内容和图像信息进行全面的语义分析。相比之下,传统方法通常只能依赖预定义规则或特定模式进行处理,难以捕捉到复杂的上下文关系。通过大量的训练数据进行学习和迭代,大语言模型可以从数据中学习到更丰富的特征表示和模式,从而更好地理解和处理文档图像。传统方法往往需要手动设计特征和规则,限制了其在复杂场景下的表现。

在这里插入图片描述

在多模态融合方面,大语言模型能够同时处理文本和图像信息,将文档图像中的文字和视觉元素进行联合分析和处理,提供更全面、准确的结果。传统方法通常是分别处理文本和图像,难以充分利用两者之间的相关性。此外,大语言模型的架构和训练方式具有较大的灵活性和可扩展性,可以根据任务需求进行调整和优化。相比之下,传统方法往往需要针对不同任务设计和实现特定的算法和流程,难以适应不同场景的需求。

在这里插入图片描述

丁凯博士举了一个复杂数据折线图的理解问题,这个问题涉及到多跳推理,因而属于复杂任务,例如,要回答

在图中,哪一年的6月份的平均汽油价格最高?

需要至少经过四个步骤

  1. x x x轴上找到6月份
  2. 比较6月份每条线的数据点
  3. 确定最高值的线条颜色
  4. 在顶部的图例中将颜色与对应的年份匹配。

任何一个步骤出错都会导致预测不准确。GPT-4V最终得出了正确的答案并提供了解释其推理过程的中间步骤,取得了超出传统方法的巨大优势。

在这里插入图片描述

由于大语言模型通过迁移学习和远程监督等技术,将在其他领域或任务上获得的知识和经验应用于智能文档图像处理,大语言模型能够更快速地适应新的任务和场景,减少数据和资源的需求。

2 大语言模型的文档感知缺陷

虽然GPT4-V在认知方面展示出巨大的潜力,但它在处理智能文档任务时,仍然具有很多的缺陷。

首先是幻觉现象,即模型错误地关联了文本信息和图像细节之间的关系,导致产生了错误的推断和判断,或根据文本信息生成与图像不符合的内容,在补全图像时添加错误或不相关的细节。丁凯博士以手写中文诗歌识别为例解释了这个问题。

在这里插入图片描述

丁凯博士接着介绍了一项全面评估GPT-4V在OCR领域能力的工作——对GPT-4V在广泛任务范围内进行了定量性能分析,这些任务包括场景文本识别、手写文本识别、手写数学表达式识别、表格结构识别以及从视觉丰富的文档中提取信息。研究显示,虽然该模型表现出了精准识别拉丁内容并支持具有可变分辨率的输入图像的强大能力,但在多语言和复杂场景方面仍然存在明显的困难。此外,高推理成本和与持续更新相关的挑战对于GPT-4V在实际部署中构成了重要障碍。因此,OCR领域的专门模型仍然具有重要的研究价值。尽管存在这些限制,GPT-4V和其他现有的通用LMM模型仍然可以在OCR领域的发展中发挥重要作用。这些作用包括提升语义理解能力、针对下游任务进行微调,并促进自动/半自动数据构建。

在这里插入图片描述

目前多模态大模型在密集文本处理方面几乎不能使用,一个很重要的原因是:多模态大模型主要基于文本进行语义理解,对于视觉感知和图像特征的提取能力有限。在处理密集文本时,相邻的文本可能会重叠、相互遮挡或无明显的边界,这需要对视觉特征进行准确地提取和分析,大语言模型的主要优势是在自然语言文本处理方面,而不是直接处理视觉信息。因此,在图像文档处理方面,由于视觉感知限制和文字识别困难,大语言模型并不适合直接应用于该领域。在处理密集文本时,需要借助于文本检测、分割和OCR等专门的技术和算法来实现准确的文本识别和提取

在这里插入图片描述

细粒度文本通常指的是文字较小、笔画细致、字形复杂的文本,如签名、古汉字、特殊符号等。这类文本在OCR领域中往往是非常具有挑战性的,因为它们往往涉及到字形和结构上的细微差异,很难直接从图像中提取出精确的文字信息。此外,在真实场景下,这些细粒度文本可能会受到光照、噪声、变形等各种干扰,这也增加了文字识别的难度。多模态大模型中的视觉编码器通常基于卷积神经网络或Transformer等模型,在处理图像时会受到分辨率的限制;另一方面,由于训练数据集中缺少针对细粒度文本的标注数据,模型很难从数据中学到有效的细粒度文本特征表示。因此,现有多模态大模型对显著文本的处理较好,但是对于细粒度文本的处理很差,要克服这些局限性,需要开展更深入的研究和探索

3 大一统文档图像处理范式

总得来说,在智能文档处理领域,大语言模型支持识别和理解的文档元素类型远超传统IDP算法,大幅度提升了AI技术在文档分析与识别领域的能力边界,端到端实现了文档的识别到理解的全过程,不足在于OCR精度距离SOTA有较大差距,长文档依赖外部的OCR/文档解析引擎。因此将传统OCR感知与大语言模型认知能力相结合的研究范式具有积极意义。

3.1 像素级OCR任务

在印刷体的文字识别领域,开展最早,且技术上最成熟的是国外的西方文字识别技术。早在 1929 年,德国的科学家Taushek已经取得了一项光学字符识别(optical character recognition, OCR)专利。自上个世纪五十年代以来,欧美国家就开始研究关于西方各个国家的文字识别技术,以便对日常生活中产生的大量文字材料进行数字化处理。经过长时间的不断研究和完善,西文的OCR技术已经有一套完备的识别方案,并广泛地用在西文的各个领域中。而像素级OCR任务是指OCR领域中的一种任务,其目标是对图像中的每个像素进行文本识别和分割。传统的OCR任务通常是将整个文本区域或文本行作为一个整体进行识别,而像素级OCR任务则更加注重对文本边界和细节的精细识别。

在这里插入图片描述

丁凯博士介绍了目前合合信息-华南理工大学联合实验室在像素级OCR任务中的研究进展。首先是通用OCR模型UPOCR。近年来,OCR领域出现了大量前沿的方法,用于各种任务。然而这些方法是针对特定任务设计的,具有不同的范式、架构和训练策略,这显著增加了研究和维护的复杂性,并阻碍了在应用中的快速部署。与之相对,UPOCR统一了不同像素级OCR任务的策略,同时引入可学习的任务提示来指导基于ViT的编码器-解码器架构。UPOCR的主干网络ViTEraser联合文本擦除、文本分割和篡改文本检测等3个不同的任务提示词进行统一训练模型训练好后即可用于下游任务,无需针对下游任务进行专门的精调。UPOCR的通用能力在多种智能文档处理任务上得到了广泛验证,显著优于现有的专门模型

在这里插入图片描述

3.2 OCR大一统模型

在OCR大一统模型方面,已经有相关工作进行了积极的探索。例如无需OCR的用于文档理解的Transformer模型Donut;通过SwinTransformer和Transformer Decoder实现文档图像到文档序列输出模型NOUGAT,及微软提出的更大的模型KOSMOS2.5

基于已有工作,丁凯博士分享了文档图像大模型的设计思路,主要是将文档图像识别分析的多种任务,通过序列预测的方式进行处理。具体来说,将每个任务所涉及的元素定义为一个序列,并设计相应的prompt来引导模型完成不同的OCR任务。例如,对于文本识别任务,可以使用prompt "识别文本: " 并将待处理的文本序列作为输入;对于段落分析任务,则可使用prompt "分析段落:"并将段落序列作为输入等等。这种方式可以保持一致的输入格式,方便模型进行多任务的处理。

此外,这个设计思路还支持篇章级的文档图像识别分析,可以输出Markdown/HTML/Text等标准格式,这样可以更好地适应用户的需求。同时,将文档理解相关的工作交给大语言模型,这意味着模型可以自动进行篇章级的文档理解和分析,从而提高了文档图像处理的效率和准确性。

在这里插入图片描述

总的来说,这种设计思路充分利用了序列预测的优势,在保持输入格式的统一性的同时,能够更好地解决文档图像处理中的多样化任务需求,并且通过与LLM的结合,实现了更高层次的文档理解和分析,为文档图像处理领域带来了更多可能性。

3.3 长文档理解与应用

丁凯博士给出了大语言模型赋能文档识别分析的技术路线:首先,文档识别分析技术需要输入文档的图像。这些图像可以是扫描得到的纸质文档、拍摄得到的照片或者从电子文档中提取的页面图像。接下来,文档图像会经过文档识别与版面分析处理。在这个阶段,技术会识别文档中的文字、图片、表格等元素,并分析文档的版面结构,包括标题、段落、页眉和页脚等。这可以帮助理解文档的整体结构和内容组织形式。在文档切分和召回阶段,技术会将文档进行切分,将不同部分的内容分离出来,以便后续的处理和分析。同时,也会实施召回策略,用于检索和提取特定的文档元素,比如标题、关键字、段落内容等。最后,在文档识别分析技术的流程中,大语言模型问答可以被应用于文档中提取信息的问答任务。通过训练大语言模型来理解文档内容,并能够回答用户提出的问题,从而实现对文档内容的智能理解和交互式查询。

在这里插入图片描述

一个实例是财报/研报文档分析,这类文档内容长、图表多、版式杂、专业性强、数据和相似概念多,具有很高的处理难度。传统方法在处理时可能面临信息过载和处理效率低下的问题。而大语言模型具有更强大的处理能力,可以处理较长的文本内容,并从中提取关键信息。同时,大语言模型通过大规模的预训练和迁移学习,具备较强的领域适应能力,能够理解相关专业术语和结构,从而更好地进行识别和分析。

在这里插入图片描述

4 总结

GPT4-V为代表的多模态大模型技术极大的推进了文档识别与分析领域的技术进展,也给传统的图像文档处理技术带来了挑战。大模型并没有完全解决图像文档处理领域面临的问题,很多问题值得我们研究。如何结合大模型的能力,更好地解决图像文档处理的问题,值得我们做更多的思考和探索。我相信感知与认知的相互碰撞将为用户带来更智能化、高效率和个性化的文档处理体验。未来随着技术的不断进步,这种结合将在商业、教育、科研等领域发挥越来越重要的作用。让我们拭目以待,期待合合信息在模式识别、深度学习、图像处理、自然语言处理等领域的深耕厚积薄发,用技术方案惠及更多的人!

抽奖福利

在这里插入图片描述

合合信息给大家送福利了!填写问卷抽10个人送50元京东卡,1月12日开奖噢~

相关文章:

感知与认知的碰撞,大模型时代的智能文档处理范式

目录 0 写在前面1 GPT4-V:拓宽文档认知边界2 大语言模型的文档感知缺陷3 大一统文档图像处理范式3.1 像素级OCR任务3.2 OCR大一统模型3.3 长文档理解与应用 4 总结抽奖福利 0 写在前面 由中国图象图形学学会青年工作委员会发起的第十九届中国图象图形学学会青年科学…...

ECMAScript和JavaScript的区别

ECMAScript和JavaScript之间的关系和差异可以从以下几个方面来理解: 定义: ECMAScript:ECMAScript是一种由Ecma国际(前身为欧洲计算机制造商协会,英文名称是European Computer Manufacturers Association)通…...

[BUG]Datax写入数据到psql报不能序列化特殊字符

1.问题描述 Datax从mongodb写入数据到psql报错如下 org.postgresql.util.PSQLException: ERROR: invalid bytesequence for encoding "UTF8": 0x002.原因分析 此为psql独有的错误,不能对特殊字符’/u0000’,进行序列化,需要将此特殊字符替…...

用数据结构python写大数计算器

下面是一个基于Python的大数计算器的示例代码: class BigNumberCalculator:def __init__(self, num1, num2):self.num1 num1self.num2 num2staticmethoddef add(num1, num2):result carry 0len1, len2 len(num1), len(num2)max_len max(len1, len2)for i in …...

08.哲说建造者模式(Builder Pattern)

“The odds that we’re in ‘base reality’ is one in billions.” —— Elon Musk 这段话出自马斯克在2016年的一次演讲,“人类活在真实世界的几率,可能不到十亿分之一”。此言一出,可谓一石激起千层浪。有人嘲讽马斯克是“语不惊人死不休…...

ubuntu18.04查询实时内存、CPU占用率命令

gnome-system-monitor效果就是下面这样:...

Python计算圆的面积

Python 计算圆的面积 圆的面积公式为 : 公式中 r 为圆的半径。 # 定义一个方法来计算圆的面积 def findArea(r): PI 3.142 return PI * (r*r) # 调用方法 r float( input("请输入圆的半径:") ) print( "圆的面积为 %.3f&qu…...

(Java企业 / 公司项目)Nacos的怎么搭建多环境配置?(含相关面试题)(二)

上一篇讲了一个单体服务中配置,传统的Nacos配置但是在微服务架构当中肯定都是多环境下配置,比如生产环境,dev测试环境等等。 第一种方式模拟开始: 首先展示在生产环境中nacos如何配置,在模块下新建一个配置文件&…...

DolphinScheduler实际应用

前言 最近公司新启动了一个项目,然后领导想用一下新技术,并且为公司提供多个大数据调度解决方案,我呢就根据领导要求调研了下当前的开源调度工具,最终决定采用DolphinScheduler, 因此研究了一下DolphinScheduler &…...

P10 RV1126推流项目——ffmpeg输出参数初始化

前言 从本章开始我们将要学习嵌入式音视频的学习了 ,使用的瑞芯微的开发板 🎬 个人主页:ChenPi 🐻推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ 🔥 推荐专栏2: 《Linux C应用编程(概念类)_C…...

正定矩阵在格密码中的应用(知识铺垫)

目录 一. 写在前面 二. 最小值点 三. 二次型结构 四. 正定与非正定讨论 4.1 对参数a的要求 4.2 对参数c的要求 4.3 对参数b的要求 五. 最小值,最大值与奇异值 5.1 正定型(positive definite) 5.2 负定型(negative defin…...

关于使用Selenium获取网页控制台的数据

背景: 需要获取网页的控制台的数据,如下图 在此文章将使用到 Pycharm 和 Selenium4 Pycharm安装 Selenium安装 from selenium import webdriver from selenium.webdriver.common.by import By import time# 创建浏览器对象 browser webdriver.Chro…...

vue2和vue3中的路由使用及传参方式

文章目录 vue2中使用路由Vue3 中使用路由路由传参方式 Vue 2 和 Vue 3 中的路由系统有很多相似之处,但也存在一些重要的区别。下面将分别介绍 Vue 2 和 Vue 3 中的路由使用方式,并了解下它们之间的不同之处。 vue2中使用路由 在 Vue 2 中,通…...

论文管理器

论文管理器 这个论文管理器仍然存在许多漏洞。目前,通过按照一些例行程序操作,它可以正常工作。我将在有时间的时候改进代码,提供详细说明,并添加新功能。当该管理器的代码进行优化后,我会上传到github上。 一个建立…...

postfix配置tls加密

1.编译安装 编译安装openss【卸载原有openssl,然后下载新的安装,因为postfix需要新版本openssl】编译安装postfix,下面这行命令 make -f Makefile.init makefiles CCARGS"-DHAS_MYSQL -I/www/server/mysql/include -DUSE_SASL_AUTH -I/usr/include…...

虚拟专线网络(IP-VPN)

虚拟专线网络(IP-VPN),因为它的安全性和可靠性。通过亚洲领先的 IP VPN 提供商。享受更高的可管理性和可扩展性,在多个站点之间交付 IP 流量或数据包,拥有亚太地区最大的 IP 骨干网。 1,保证正常运行时间,在网络链路发…...

【Unity动画系统】Unity动画系统Animation详解,参数细节你是否弄清?

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…...

K8S Helm安装RocketMQ standalone单机版,配置外网地址注册到nameserver中方便本地开发

K8S Helm安装RocketMQ standalone单机版,配置外网地址注册到nameserver中方便本地开发 helm地址 rocketmq 3.0.2 sir5kong/rocketmq helm repo add rocketmq https://helm-charts.itboon.top/rocketmq helm pull rocketmq/rocketmq tar -xvf rocketmq-3.0.2.t…...

分布式基础概念

分布式基础概念 1 微服务 微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个小服务运行在自己的进程中,并使用轻量级机制通信,通常是HTTP API。这些服务围绕业务能力来构建,并通过完全自动化部署机制…...

蓝桥杯python比赛历届真题99道经典练习题 (89-99)

【程序89】 题目:某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下: 每位数字都加上5,然后用和除以10的余数代替该数字,再将第一位和第四位交换,第二位和第三位交换。 1.程序分析: 2.程序源代码: from sys import stdout if __n…...

蚂蚁矿机AntMiner T9+引出IO定义

这个板子只有s9的原理图参考,大部分一样但是也有很多改动。 下面是自己测出来的IO。全部为PL,没有PS引出。 共计56个引脚可用,但是不是都是完整的差分对,而且显然有些走线没办法高速跑。 测试方法 万用表先区分VCC GND和IO(对地…...

浅析 Dockerfile 构建缓存:原理与优化方法

Docker镜像的分层结构 Docker镜像是由一层一层的文件系统组成,UnionFS将这些镜像层堆叠在一起镜像层是只读的,构建完成后就不能更改了,即使在新的镜像层修改或删除了某些文件,也不会影响之前的镜像层内容用Dockerfile构建镜像时&…...

隐藏层节点数对分类准确率的影响

直线上有9个格子,4个石子, 数量 结构编号 6 0 1 1 1 1 0 0 0 0 0 5 2 1 1 1 0 1 0 0 0 0 5 1 1 0 1 1 1 0 0 0 0 4 3 1 1 0 0 1 1 0 0 0 4 4 1 0 1 0 1 1 0 0 0 3 5 1 0 1 0 1 0 1 0…...

【水浸传感器】软硬件一体水浸监测整套方案远程监测解决各种环境漏水问题

一、痛点分析 在工业生产中,水浸传感器可以安装在数据中心、半导体厂房、输油管道、车间仓库、变电室等易发生水浸的区域。一旦检测到漏水情况,立即发出信号反馈。然而,水浸传感器分散在各个地点,导致管理不集中、不便捷&#xf…...

知虾会员**成为知虾会员,尊享专属权益**

在当今繁忙的生活中,线上购物已经成为现代人们的主要消费方式之一。而作为线上购物平台的领军者之一,Shopee为了提供更加个性化和便利的购物体验,推出了知虾会员(Shopee会员)服务。知虾会员不仅可以享受到一系列会员专…...

好代码网同款wordpress主题,适合搭建资源分享类网站,自带五六百的精品资源数据

代码简介: 好代码资源网是个还不错的资源分享类网站,基于wordpress搭建的。它的主题看起来还是不错的。这里分享一下这个网站的主题包。说是主题包,其实就是整站打包的,集成了主题(wordpress美化主题包几个插件&#…...

Java多线程<三>常见的多线程设计模式

多线程的设计模式 两阶段线程终止 park方法 interrupted() 会让他失效。 使用volatile关键字进行改写 单例模式 双锁检测 保护性暂停 实现1: package threadBase.model;/*** author: Zekun Fu* date: 2022/5/29 19:01* Description:* 保护性暂停,* …...

JavaScript 基础二part1.运算符:赋值、一元、比较、逻辑运算符

JavaScript 基础二 1.1 赋值运算符1.2 一元运算符自增运算符的用法:例题 1.3 比较运算符不同类型间的比较严格相等对 null 和 undefined 进行比较 1.4 逻辑运算符例题 1.5 运算符优先级 1.1 赋值运算符 赋值运算符:对变量进行赋值的运算符 已经学过的赋…...

Linux 进程(八) 进程的退出码

main 函数的返回值叫做进程的退出码。当进程成功退出的时候,我们一般用0来表示。进程失败的时候一般用非零来表示。我们使用不同的数字来表示进程退出时不同的失败原因。 我们查看系统的有多少退出码以及其含义时需要用到strerror() 他的头文件和用法如下。 通过一…...

Go语言中支持的internal目录配置与组织内私网包配置详解

Go 中的内部包 这里可能会有歧义 可能是 Go 的 internal 目录中的包也可能是指内部开发的包 函数和变量的可见性 对于函数和变量而言,有如下规则:1 )小写字母开头的函数变量结构体只能在本包内访问2 )大写字母开头的函数变量结…...

做网站写的代号好跟不好的区别/如何建立一个自己的网站

前言 加油 原文 员工培训常用会话 ❶ When is our training session? 我们的课程培训在什么时候? ❷ You shouldn’t be absent at training sessions. 你不能缺席课程培训。 ❸ You should follow these rules and regulations. 你应该遵守这些规章制度。 ❺ The staff…...

mac做网站改html文件/seo关键字优化教程

文章目录一.决策树1. 乳腺癌数据集-分类2. 可视化1. 树的可视化:2. 特征重要性(feature importance)3. 回归树4. 优缺点与主要参数二. 集成的树1. 随机森林(random forest)示例特征重要性优缺点与关键参数2. 梯度提升决…...

温州哪里有网站建设/公司做网络推广哪个网站好

消防安全知识讲座观后感 500字 [篇1]我们一起聆听了消防知识普及专题讲座,受益匪浅。主讲者从鲜活的案例入题,讲述了近一两年发生在我国的重特大火灾事故及其引发的原因,给我们敲响了警钟。消防安全在日常工作中往往被忽视,我们往…...

网站建设的市场定位分析/什么是精准营销

SpringBoot集成的Activiti6.0代码(绘制工具界面代码 审批代码) 最近主管需要我搭建一个基于Activiti6.0引擎的工作流平台,在配置好Tomcat并成功运行Activiti6.0官网所提供的war包后,在平台上创建了一个二级审批流程,…...

星巴克网站建设/什么网站可以发布广告

一.数组概念 数组是指一组数据的集合,其中的每个数据被称作元素,在数组中可以存放任意类型的元素。数组是一种将一组数据存储在单个变量名下的优雅方式。 二.创建数组 1.JS中创建数组有两种方式∶ 利用new创建数组这种方式暂且了解,等学完…...

简单网站建设/网站查询工具

管道的半双工 管道在双方在内核中共用同一内存区,为了保证数据信息的准确性,所以双方进程读写互斥,且一方写时另一方不可读。 由于双方共享一块缓冲,所以半双工的限制就产生了。 Socket的双工 所谓双工就是两个进程拥有两块缓存…...