当前位置: 首页 > news >正文

“华为杯”杭州电子科技大学2023新生编程大赛---树

题目链接

Problem Description

给定一棵包含 n 个节点的带边权的树,树是一个无环的无向联通图。定义 xordist(u,v) 为节点 u 到 v 的简单路径上所有边权值的异或和。

有 q 次询问,每次给出 `l r x`,求 ∑ri=lxordist(i,x) 的值。

Input

测试点包含多组数据。第一行包含一个整数 T(1≤T≤10),表示数据组数。每组数据的输入格式如下:
第一行包含一个整数 n(1≤n≤105),表示节点的个数。
接下来 n−1 行,每行包含三个整数 u、v 和 w(1≤u,v≤n,0≤w<230),表示 u 和 v 之间存在一条权值为 w 的无向边。保证输入是一棵树。
接下来一行,包含一个整数 q(1≤q≤105),表示询问的次数。
接下来 q 行,每行包含三个整数 l、r 和 x(1≤l≤r≤n,1≤x≤n),分别表示每次询问的信息,其含义已在上文说明。

Output

每组数据包含 q 行,每行一个整数,表示每次询问的答案。

题意:

定义了一个函数  xordist(u,v) 为节点 u 到 v 的简单路径上所有边权值的异或和。

给你多次询问,求有 q 次询问,每次给出 l, r, x,求 \sum_{i=l}^{r} xordist(i,x) 的值。

思路:

首先可以知道,我们任意选一点为根 root 往下递归异或就可以得到 f [ i ](root 到 i 的路径异或值 ),那么  l 到 r 的路劲异或值可以由 f [ l ] ^ f [ r ]得出;

那么如何计算答案呢,就是用 f [ l ]~f [ r ] 分别异或f [ x ] 相加即可,但是1e5级别的询问显然时间复杂度不可以接受,然后我们就行有什么可以快速算出 l ~ r  的贡献呢,这时候就看思维发不发散了,这里可以想到用前缀和;

(当然不是异或前缀和,异或不满足分配律,比如 (2^3+2^3+4^3)!=8^3

所以是另一种 :计算1~n , f [ i ] 2进制的每一位1和0的前缀和,

那么答案就是,对f [ x ] 的每一位的贡献计算,比如f [ x ] 第2位是0,那么根据异或1异或0才有贡献, 贡献就是 pow( 2 , i (第几位) )*( sum1[ r ][ i ]-sum1[ l-1 ][ i ] );

复杂度位1e5*30,显然可以接受

完毕

int n;
int f[N];
vector<PII> g[N];
void dfs(int u, int fa)
{for (auto ed : g[u]){if (ed.xx == fa)continue;f[ed.xx] = f[u] ^ ed.yy;dfs(ed.xx, u);}
}
int qpow(int a, int b)
{int res = 1;while (b){if (b & 1)res = res * a;a = a * a;b >>= 1;}return res;
}
void solve()
{cin >> n;for (int i = 1; i <= n; i++){g[i].clear();f[i] = 0;}int root = inf;for (int i = 1; i <= n - 1; i++){int a, b, c;cin >> a >> b >> c;g[a].pb({b, c});g[b].pb({a, c});root = min({a, b, root});}dfs(root, -1);vector<vector<int>> sum1(n + 2, vector<int>(32));vector<vector<int>> sum0(n + 2, vector<int>(32));for (int i = 1; i <= n; i++){for (int j = 0; j <= 29; j++){int x = (f[i] >> j & 1);if (x)sum1[i][j]++;elsesum0[i][j]++;sum1[i][j] += sum1[i - 1][j];sum0[i][j] += sum0[i - 1][j];}}int q;cin >> q;while (q--){int l, r, x;cin >> l >> r >> x;int ans = 0;for (int i = 0; i <= 29; i++){int t = (f[x] >> i & 1);if (t)ans += qpow(2, i) * (sum0[r][i] - sum0[l - 1][i]);elseans += qpow(2, i) * (sum1[r][i] - sum1[l - 1][i]);}cout << ans << endl;}
}
signed main()
{Yshanqian;int T;T = 1;cin >> T;for (int cases = 1; cases <= T; ++cases){// cout<<"Case #"<<cases<<": ";solve();}return 0;
}

相关文章:

“华为杯”杭州电子科技大学2023新生编程大赛---树

题目链接 Problem Description 给定一棵包含 n 个节点的带边权的树&#xff0c;树是一个无环的无向联通图。定义 xordist(u,v) 为节点 u 到 v 的简单路径上所有边权值的异或和。 有 q 次询问&#xff0c;每次给出 l r x&#xff0c;求 ∑rilxordist(i,x) 的值。 Input 测试…...

使用pnnx将Torch模型转换为ncnn

1. 引言 以往我们将Torch模型转换为ncnn模型&#xff0c;通常需经过Torch–>onnx&#xff0c;onnx–>ncnn两个过程。但经常会出现某些算子不支持的问题。 ncnn作者针对该问题&#xff0c;直接开发一个Torch直接转换ncnn模型的工具 (PNNX)&#xff0c;以下为相关介绍及使…...

linux卸载小皮面板phpstudy教程

千万不要直接删文件夹&#xff01; 千万不要直接删文件夹&#xff01; 千万不要直接删文件夹&#xff01; 我就是按照网上搜索的教程&#xff0c;直接删了&#xff0c;然后 系统就不停的崩溃 生成这种文件&#xff1a; -rw------- 1 root root 223M Dec 28 22:36…...

【萤火虫系列教程】1/5-Adobe Firefly 注册账号

001-Adobe Firefly 注册账号 AI时代如火如荼&#xff0c;Adobe也不甘落后&#xff0c;于今年3月份发布AI创意生成工具Firefly&#xff08;中文翻译&#xff1a;萤火虫&#xff09; Adobe Firefly简介 Adobe Firefly的官方介绍为&#xff1a;Firefly是Adobe产品中新的创意生成…...

【docker】Dockerfile 指令详解

一、Dockerfile 指令详解 Dockerfile是一个用于编写docker镜像生成过程的文件&#xff0c;其有特定的语法。Dockerfile的基本指令有十三个&#xff0c;分别是&#xff1a;FROM、MAINTAINER、RUN、CMD、EXPOSE、ENV、ADD、COPY、ENTRYPOINT、VOLUME、USER、WORKDIR、ONBUILD。 …...

内存管理机制

内存管理机制与内存映射相关。 一、C与C 之所以将C与C放在一起是因为C是C的超集&#xff1b; 但是C是面向过程语言&#xff0c;C是面向对象的语言&#xff1b; C与C都可以使用malloc、calloc、realloc来申请内存空间&#xff1b; 其中void* malloc(size_t size)是在内存的动态…...

Jenkins工具使用

学习目录&#xff1a; 1、jenkins的安装 2、junkins的常规使用 3、jenkins在接口自动化测试实践 具体内容&#xff1a; 1、jenkins的安装 安装包下载&#xff1a;推荐Index of /jenkins/war/latest/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror&#xff0c;…...

SpringBoot从配置文件中获取属性的方法

方式一&#xff1a;Value 基本类型属性注入&#xff0c;直接在字段上添加Value("${xxx.xxx}")即可&#xff0e;注意这里用的是$&#xff0c;而不是#&#xff0c;Value注入的属性&#xff0c;一般其他属性没有关联关系。 配置文件 user:name: Manaphyage: 19sex: m…...

oracle物化视图

物化视图定义 视图是一个虚拟表&#xff08;也可以认为是一条语句&#xff09;&#xff0c;基于它创建时指定的查询语句返回的结果集&#xff0c;每次访问它都会导致这个查询语句被执行一次&#xff0c;为了避免每次访问都执行这个查询&#xff0c;可以将这个查询结果集存储到…...

基于ssm校园线上订餐系统的设计与实现论文

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自古…...

鸿蒙南向开发—OpenHarmony技术编译构建框架

概述 OpenHarmony编译子系统是以GN和Ninja构建为基座&#xff0c;对构建和配置粒度进行部件化抽象、对内建模块进行功能增强、对业务模块进行功能扩展的系统&#xff0c;该系统提供以下基本功能&#xff1a; 以部件为最小粒度拼装产品和独立编译。支持轻量、小型、标准三种系…...

Android Jetpack学习系列——Navigation

写在前面 Google在2018年就推出了Jetpack组件库&#xff0c;但是直到今天我才给重视起来&#xff0c;这真的不得不说是一件让人遗憾的事。过去几年的空闲时间里&#xff0c;我一直在尝试做一套自己的组件库&#xff0c;帮助自己快速开发&#xff0c;虽然也听说过Jetpack&#…...

编程语言的新趋势

随着科技的飞速发展&#xff0c;IT行业经历了巨大的变革&#xff0c;其中编程语言作为技术生态的核心要素&#xff0c;其演变趋势对整个行业影响深远。从过去到现在&#xff0c;再到未来&#xff0c;编程语言的发展都呈现出明显的时代特征。本文将探讨当前IT行业的现状&#xf…...

C++:类和对象(2)

目录 1.strcut和class的区别 2.将成员属性设置为私有 3.对象的初始化和清理 3.1 构造函数和析构函数 3.1.1 构造函数语法 3.1.2 析构函数语法 3.1.3 检验 3.2 构造函数的分类和调用 3.3 拷贝构造函数调用 1.strcut和class的区别 struct和class的唯一区别在于默认的访问…...

【React系列】网络框架axios库的使用

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. axios库的基本使用 1.1. 网络请求的选择 目前前端中发送网络请求的方式有很多种&#xff1a; 选择一:传统的Aj…...

pygame学习(二)——绘制线条、圆、矩形等图案

导语 pygame是一个跨平台Python库(pygame news)&#xff0c;专门用来开发游戏。pygame主要为开发、设计2D电子游戏而生&#xff0c;提供图像模块&#xff08;image&#xff09;、声音模块&#xff08;mixer&#xff09;、输入/输出&#xff08;鼠标、键盘、显示屏&#xff09;模…...

TCL学习笔记(持续更新)

前言&#xff1a; TCL&#xff08;tool common language&#xff09;是一种通用工具语言&#xff0c;很多eda tool都支持tcl&#xff0c;学习了解一些tcl基本语法还是很有必要的。 1&#xff1a;基础概念 解释器&#xff1a; #!/usr/bin/tclsh 打印&#xff1a; puts -> p…...

Xpath的问题:为什么在DOM中确定存在(可见)的元素,用//表达式匹配不到(附解决办法)

今天遇到一个很有意思的问题&#xff0c;我的爬取的目标页面上有时会出现一个弹窗&#xff0c;它挡住我点击其它按钮了&#xff0c;我想找到它的关闭按钮&#xff0c;自动点击一下关闭掉&#xff0c;本来是很简单的事情&#xff0c;但偏偏出问题了&#xff0c;DOM中看到的html是…...

有没有游泳可以戴的耳机?游泳耳机入耳式好,还是骨传导好

游泳是一项既能锻炼身体又能让人放松心情的运动。我们知道&#xff0c;音乐能够为我们的水上时光增添更多的乐趣。那么&#xff0c;在众多游泳耳机中&#xff0c;如何选择一款既适合自己的需求又具备良好性能的产品呢&#xff1f; 首先&#xff0c;我们要了解的是&#xff0c;…...

【绘图软件】自用安装教程

链接&#xff1a;https://pan.baidu.com/s/17r9Pr460FzkULU7fTr91_w?pwdftv7 提取码&#xff1a;ftv7 --来自百度网盘超级会员V6的分享解压并且右键打开set up 解压crack软件前需要退出杀毒软件&#xff0c; 关闭实时保护 域网络关闭&#xff0c;专用网络关闭&#xff0…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...