当前位置: 首页 > news >正文

Agilent安捷伦E4990A阻抗分析仪20Hz

Agilent安捷伦E4990A阻抗分析仪性能卓越,适用于元器件、半导体和材料测量。它具有宽广的频率范围,从20Hz到120MHz,能够适应各种不同的阻抗测量需求。在宽阻抗范围内,该仪器能够提供出色的0.045%(典型值)基本准确度,这一性能表现使其成为了阻抗分析领域的佼佼者。

除了高精度测量,E4990A还内置了40V直流偏置源,这使得该仪器在测量各种不同阻抗元器件时能够提供更为准确的结果。无论是在半导体器件的测量中还是在材料性质的评估中,E4990A都能以其卓越的性能满足各种需求。

E4990A的操作非常简单,用户可以轻松地通过面板上的按键进行操作。同时,它还提供了丰富的数据接口,可以方便地将测量数据导出,进行进一步的数据分析。

E4990A阻抗分析仪是一款高性能、宽频率范围、内置直流偏置源且易于操作的优秀仪器。无论是在科研实验中还是在工业生产中,它都能为阻抗测量提供最为准确的解决方案。

安捷伦Agilent E4990A特点
5 种可升级的频率选件:20 Hz 至 10/20/30/50/120 MHz
10.4 英寸彩色 LCD 触摸屏可显示 4 个通道和 4 条迹线
数据分析功能:等效电路分析、极限线测试
基本阻抗测量准确度:±0.08%(±0.045%,典型值)
25 m? 至 40 M? 宽阻抗测量范围(10% 测量准确度范围)
测量参数:|Z|、|Y|、θ、R、X、G、B、L、C、D、Q、复数 Z、复数 Y、Vac、Iac、Vdc、Idc
内置直流偏置源:0 V 至 ±40 V,0 A 至 ±100 mA
加快测量速度选件(选件 001,仅适用于 10M/20M/30M/50M 选件)

相关文章:

Agilent安捷伦E4990A阻抗分析仪20Hz

Agilent安捷伦E4990A阻抗分析仪性能卓越,适用于元器件、半导体和材料测量。它具有宽广的频率范围,从20Hz到120MHz,能够适应各种不同的阻抗测量需求。在宽阻抗范围内,该仪器能够提供出色的0.045%(典型值)基本…...

性能优化-OpenMP概述(一)-宏观全面理解OpenMP

本文旨在从宏观角度来介绍OpenMP的原理、编程模型、以及在各个领域的应用、使用、希望读者能够从本文整体上了解OpenMP。 🎬个人简介:一个全栈工程师的升级之路! 📋个人专栏:高性能(HPC)开发基础…...

Prometheus实战篇:Prometheus监控nginx

准备环境 在此专栏的前几篇文章中已经准备了一台服务器作为我们进行环境的准备.大家也可以通过虚拟机创建俩台服务器,一台作为Prometheus的安装另外一台进行其他软件安装并且进行监控的服务器. 这里我就不赘述nginx的安装教程,相信大家都可以搜到,使用docker或者直接通过安装包…...

JVM加载class文件的原理机制

1、JVM 简介 JVM 是我们Javaer 的最基本功底了,刚开始学Java 的时候,一般都是从“Hello World ”开始的,然后会写个复杂点class ,然后再找一些开源框架,比如Spring ,Hibernate 等等,再然后就开发…...

如何使用CapSolver解决Web爬虫中遇到的CAPTCHA问题

Web爬取是一种强大的技术,用于从网站中提取数据,但经常会遇到一个常见障碍,即CAPTCHA。CAPTCHA是“Completely Automated Public Turing test to tell Computers and Humans Apart”的缩写,旨在防止自动机器人访问网站。然而&…...

杰发科技AC7801——IO模拟IIC注意事项

7801的参考手册没有说清楚 7840说明了用开漏 使用办法...

展台搭建与设计都有哪些思路

1、现代简约 设计理念强调简洁、线条清晰和空间布局,突出产品本身,使展台干净整洁,适合展示高科技、现代化的产品。 2、自然生态 利用植物、木材等自然元素,营造与自然和谐共处的氛围,适合健康、环保、生态产品。 3、品…...

解决mock单元测试中 无法获取实体类xxx对应的表名

错误描述:在执行单元测试时,执行到new Example时抛出异常,提示无法获取实体类xxx对应的表名 Example example new Example(ServeSubscribeRecord.class);Example.Criteria criteria example.createCriteria();criteria.andEqualTo("se…...

arm64虚拟化技术与kvm实现原理分享

文章目录 1 简介2 arm64 虚拟化相关硬件支持2.1 arm64 cpu 虚拟化基本原理及硬件支持2.2 系统寄存器捕获和虚拟寄存器支持2.3 VHE 特性支持2.4 内存虚拟化支持2.5 IO 虚拟化支持2.6 DMA 虚拟化支持2.7 中断虚拟化支持2.8 定时器虚拟化支持 3 arm64 kvm 初始化流程3.1 初始化总体…...

选择 省市区 组件数据 基于vue3 + elment-plus

h5 <el-cascader v-model"form.area" :props"{value: label,label: label }" :options"jsonData" change"handleChange" style"width: 100%;" /> script import jsonData from /utils/city.json; 选完省市区 数据是一…...

了解 nextTick

一. 什么是 nextTick 简单的说&#xff0c;nextTick 方法是在 Vue.js 中常见的一种异步更新 DOM 的机制。它的原理是利用 JavaScript 的事件循环机制以及浏览器的渲染流程来实现延迟执行 DOM 更新操作。 它的出现主要是为了解决 Vue 的异步更新导致的 DOM 更新后的操作问题。…...

C++精进之路(十六)string类和标准模板库

C提供了一组功能强大的库&#xff0c;这些库提供了很多常⻅编程问题的解决方案以及简化其他问题的工具。 string 类为将字符串作为对象来处理提供了一种方便的方法。string 类提供了自动内存管理功能以及众多处 理字符串的方法和函数。例如&#xff0c;这些方法和函数让您能够合…...

【23.12.29期--Redis缓存篇】谈一谈Redis的集群模式

谈一谈Redis的集群模式 ✔️ 谈一谈Redis的集群模式✔️主从模式✔️ 特点✔️Redis主从模式Demo ✔️哨兵模式✔️Redis哨兵模式Demo✔️特点 ✔️Cluster模式✔️Redis Cluster模式Demo✔️特点 ✔️ 谈一谈Redis的集群模式 Redis有三种主要的集群模式&#xff0c;用于在分布…...

【算法挨揍日记】day34——647. 回文子串、5. 最长回文子串

647. 回文子串 647. 回文子串 题目描述&#xff1a; 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串&am…...

欧科云链研究院:奔赴2024,Web3与AI共振引爆数字时代潘多拉魔盒

出品&#xff5c;欧科云链研究院 2024年&#xff0c;Web3与AI两个数字科技的巅峰碰撞&#xff0c;欧科云链研究院探索AI与Web3的技术融合&#xff0c;与澎湃科技联合发布2024年展望&#xff0c;原标题为《2024年展望&#xff1a;Web3与AI共振引爆可信数字社会》&#xff0c;共…...

【Py/Java/C++三种语言OD2023C卷真题】20天拿下华为OD笔试之【数学】2023C-素数之积【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录 题目描述与示例题目描述输入描述输出描述示例输入输出说明 解题思路暴力解质数筛 代码PythonJavaC时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目描述与示例 题目描述 RSA加密算法在网络安全世界中无处不在&#xff0c;它利用了极大些数因数分解的闲难…...

uniapp路由

1、路由登记 uni-app页面路由为框架统一管理&#xff0c;开发者需要在pages.json里配置每个路由页面的路径及页面样式。 类似小程序在 app.json 中配置页面路由一样。 所以 uni-app 的路由用法与 Vue Router 不同&#xff0c;如仍希望采用 Vue Router 方式管理路由&#xff0c;…...

湖南大学-数据库系统-2023期末考试【原题】

前言 早上11&#xff1a;00考完的考试&#xff0c;下午回来打了三把LOL之后&#xff0c;凭着回忆把题目重现出来了。 在复习的时候刷了15&#xff0c;16&#xff0c;17&#xff0c;18&#xff0c;19&#xff0c;21六年的卷子&#xff0c;感觉题目都差不多&#xff0c;但是难度…...

【Java EE初阶九】多线程案例(线程池)

一、线程池的引入 引入池---->主要是为了提高效率&#xff1b; 最开始&#xff0c;进程可以解决并发编程的问题&#xff0c;但是代价有点大了&#xff0c;于是引入了 “轻量级进程” ---->线程 线程也能解决并发编程的问题&#xff0c;而且线程的开销比进程要小的多&…...

理解 Node.js 中的事件循环

你已经使用 Node.js 一段时间了&#xff0c;构建了一些应用程序&#xff0c;尝试了不同的模块&#xff0c;甚至对异步编程感到很舒适。但是有些事情一直在困扰着你——事件循环&#xff08;Event Loop&#xff09;。 如果你像我一样&#xff0c;花费了无数个小时阅读文档和观看…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...