当前位置: 首页 > news >正文

机器学习模型可解释性的结果分析

        模型的可解释性是机器学习领域的一个重要分支,随着 AI 应用范围的不断扩大,人们越来越不满足于模型的黑盒特性,与此同时,金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求,在可解释 AI 一文中我们已经了解到模型可解释性发展的相关背景以及目前较为成熟的技术方法,本文通过一个具体实例来了解下在 MATLAB 中是如何使用这些方法的,以及在得到解释的数据之后我们该如何理解分析结果。

要分析的机器学习模型

图片

我们以一个经典的人体姿态识别为例,该模型的目标是通过训练来从传感器数据中检测人体活动。传感器数据包括三轴加速计和三轴陀螺仪共6组数据,我们可以通过手机或其他设备收集,训练的目的是识别出人体目前是走路、站立、坐、躺等六种姿态中的哪一种。我们将收集到的数据做进一步统计分析,如求均值和标准差等,最终获得18组数据,即18个特征。然后可以在 MATLAB 中使用分类学习器 App 或者通过编程的形式进行训练,训练得到的模型混淆矩阵如下,可以看到对于某些姿态的识别,模型会存在一定误差。那么接下来我们就通过一系列模型可解释性的方法去尝试解读一下错误判别的来源。

从混淆矩阵中可以看到,模型对于躺 ‘Laying’ 的姿态识别率为 100%,而对于正常走路和上下楼这三种 ‘Walking’ 的姿态识别准确率较低,尤其是上楼和下楼均低于70%。这也符合我们的预期,因为躺的姿态和其他差别较大,而几种走路之间差异较小。

但我们也留意到模型在 ‘Sitting’ 和 ‘Standing’ 之间也产生了较大的误差,考虑到这两者之间的差异,我们想探究一下产生这种分类错误背后的原因。首先我们从图中所示的区域选择了一个样本点 query point,该样本的正确姿态为 ‘Sitting’,但是模型识别成了 ‘Standing’,为便于下一步分析,这里将该样本点所有特征及其取值列举了出来,如前所述一共 18 个,分别对应于原始的6个传感器数据的平均值、标准差以及第一主成分:

图片

使用可解释性方法进行分析

模型可解释性分析的目的在于尝试对机器学习黑盒模型的预测结果给出一个合理的解释,定性地反映出输入数据的各个特征和预测结果之间的关系。对于预测正确的结果,我们可以判断预测过程是否符合我们基于领域知识对该问题的理解,是否有一些偶然因素导致结果碰巧正确,从而保证了模型可以在大规模生产环境下做进一步应用,也可以满足一些法规的要求。

而对于错误的结果,如上文中的姿态识别,我们可以通过可解释性来分析错误结果是由哪些因素导致的,更具体地说,即上述 18 个特征对结果的影响。在此基础上,可以更有针对性地进行特征选择、参数优化等模型改进工作。

接下来我们就尝试用几种不同的可解释性方法来对上文中的 query point 做进一步分析,希望可以找到一些模型分类错误的线索。

2.1 Shapley 值

我们尝试的第一个方法是 Shapley 值,Shapley 值起源于合作博弈理论,它基于严格的理论分析并给出了完整的解释。作为一个局部解释方法,Shapley 值通过对所有可能的特征组合依次计算,从而得到每个特征对预测结果的平均边际贡献,并且这些值是相对于该分类的平均得分而言的。可以简单理解为边际贡献的分值越高,对产生当前预测结果的影响越大。因为有着完善的理论基础且发展时间较长,Shapley 值被广泛应用于金融领域来满足一些法律法规的要求。

我们之前已经了解到 Shapley 值反应的是每个特征的平均边际贡献,并且这些值是相对于该分类的平均得分而言的。首先需要计算出 ‘Standing’ 的平均得分,我们会将数据集中所有点关于 ‘Standing’ 的预测得分取平均得到相应的值,即 0.17577。而我们关注的样本点预测为 ‘Standing’ 的得分为 1,相对较高,它和所有点的平均值相比差值为 0.82423,Shapley 值反应的正是该样本点中每个特征对这个差值的贡献,其总和也正是 0.82423。

图中显示了排行前十的特征及对应的 Shapley 值,我们可以看到 rowmean_body_gyro_z 的值最大,说明它对错误判别的影响最大,当然紧随其后的几个特征的 Shapley 值也较为接近。

特征 rowmean_body_gyro_z的实际含义为z方向陀螺仪的平均值,为什么这个特征可能导致了错误的结果?我们可以接着往下分析。

2.2 PDP - Partial Dependency Plot

Shapley 值虽然很清晰地给出了各个特征对于最终预测结果的贡献,但是我们需要更多的信息来分析错误产生的来源,一个有效的方法是结合 PDP 又称部分依赖图来进行查看。

PDP 是一个全局解释方法,关注单个特征对某一预测结果的整体影响,其思想是假设所有样本中的该特征等于某一个固定值,从而计算出一个预测结果的平均值。当我们将该特征取一系列值时(取值范围仍然来源于样本),便可以绘制出对应的曲线。我们接着 Shapley 值的分析选择特征 rowmean_body_gyro_z(对应数据中的位置为第6个特征),以及 query point 对应的真实分类 ‘Sitting’ 和错误分类 ‘Standing’ 分别绘制 PDP,在 MATLAB 中使用的方法仍然非常简单,具体代码及对应结果如下:

plotPartialDependence(model,6,'Sitting');

% rowmean_body_gyro_z is the 6th predictor in our data table

图片

plotPartialDependence(model,6,'Standing');

图片

根据上图以及第 1 节中 query point 在该特征的实际取值 0.017 可以看出,当该特征的取值接近于 0 时,分类为 ‘Standing’ 的分数较高,而当取值向两端靠拢尤其是接近于 -0.5 时分类为 ‘sitting’ 的分数较高,甚至大于 0.5,这也符合该点的实际预测值。

图片

通过部分依赖图我们对 Shapley 值的分析结果有了更清楚的认识,虽然该样本点的预测结果是错误的,但结合原始数据可以看出,这样的结果是有迹可循且合理的。

          免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。

下面是部分截图,加我免费领取

目录

一、人工智能免费视频课程和项目

二、人工智能必读书籍

最后,我想说的是,自学人工智能并不是一件难事。只要我们有一个正确的学习方法和学习态度,并且坚持不懈地学习下去,就一定能够掌握这个领域的知识和技术。让我们一起抓住机遇,迎接未来!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以点击链接领取 

二维码详情

相关文章:

机器学习模型可解释性的结果分析

模型的可解释性是机器学习领域的一个重要分支,随着 AI 应用范围的不断扩大,人们越来越不满足于模型的黑盒特性,与此同时,金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求,在可解释 AI 一文中我们已…...

静态网页设计——环保网(HTML+CSS+JavaScript)(dw、sublime Text、webstorm、HBuilder X)

前言 声明:该文章只是做技术分享,若侵权请联系我删除。!! 感谢大佬的视频: https://www.bilibili.com/video/BV1BC4y1v7ZY/?vd_source5f425e0074a7f92921f53ab87712357b 使用技术:HTMLCSSJS(…...

【HarmonyOS】装饰器下的状态管理与页面路由跳转实现

从今天开始,博主将开设一门新的专栏用来讲解市面上比较热门的技术 “鸿蒙开发”,对于刚接触这项技术的小伙伴在学习鸿蒙开发之前,有必要先了解一下鸿蒙,从你的角度来讲,你认为什么是鸿蒙呢?它出现的意义又是…...

学习笔记——C++中数据的输入 cin

作用:用于从键盘中获取数据 关键字:cin 语法:cin>>变量 类型:C中数据的输入主要包含:整形(int)浮点型(float,double float),字符型&…...

Filter Options in Select Field

Filter Options in Select Field 假设有两个下拉字段State和City。邦有两个值卡纳塔克邦和马哈拉施特拉邦,城市有四个值,班加罗尔,迈索尔,孟买和浦那。如果希望根据State中选择的值过滤City中的选项,可以编写如下所示的…...

【React系列】Hook(二)高级使用

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. Hook高级使用 1.1. useReducer 很多人看到useReducer的第一反应应该是redux的某个替代品,其实并不是…...

编程笔记 html5cssjs 018 HTML颜色

编程笔记 html5&css&js 018 HTML颜色 一、HTML 颜色二、HTML中设置颜色值三、颜色名称和颜色值 颜色是视觉中重要因素,尤其是处理人机界面中,更是要处理颜色设置和搭配。在网页中,提供了设置颜色的一些方案,需要我们认真学…...

C++_继承

介绍 继承的基本概念 1.共性和个性 (PS:有相同的属性 但是 又有自己的特点) 基类和子类 1. 基类(父类) 共性 2. 子类(派生类) 个性(特点) 继承语法 1.class 子类名:继承方式1 基类1,继承方式2 基类2{ 行为 };继承方式(PS:默认继承方式为:私有继承) 1.公有继承: public 2.保护…...

Java-IO流-15

文件操作 文件创建 package com.edu.file;import org.junit.jupiter.api.Test;import java.io.File; import java.io.IOException;public class Demo01 {public static void main(String[] args) {}Test//方式1public void create01(){String filePath "D:\\new1.txt&q…...

java中使用redis

1、redis数据类型 1.1、5种数据类型 redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型:字符串 string、哈希 hash、列表 list、集合 set、有序集合 sorted set / zset。 字符串(string):普通字符…...

Mongodb的可重试读操作

目录 重试读操作 需要条件 启用重读 支持可重试读的操作 不支持可重试读的操作 行为 重试读操作 连接mongodb进行读操作时,遇到网络或数据库集群的主节点切换导致的数据读问题。mongodb驱动自动尝试重新执行读操作。 需要条件 数据库连接驱动支持mongodb4.2…...

2024年1月2日-1月7日(ue5底层渲染+ue arpg+项目需求)

按照月计划,按照每小时分四段进行,arpg一例ue5底层渲染0.1小时arpg一例项目需求的相关视频教程一段 周二: 18:30- 19:30(1小时)ue arpg (88-89) ue5底层渲染03A14(6:08)…...

MySQL中的视图和触发器

SQL 视图 1 ) 概述 在mysql中,视图是一个非真实存在的虚拟表其本质是,根据sql语句获取动态的数据集,并为其命名用户使用时只需使用名称,即可获取结果集,并可以将其当做表来使用 2 )用法示例 2.1 比较麻烦…...

uView-UI v2.x常见问题整理

为了更好的给大家提供 uView UI 的技术支持,uView UI 团队整理常见问题文档,大家可以阅读查找常见的问题解决办法。 uView 2.x 文档 https://www.uviewui.com uView 1.x 文档 https://v1.uviewui.com uView UI uni-app 主页 DCloud 插件市场 uVie…...

MBTI职业性格测试 28题(免费版)

MBTI职业性格测试概述 MBTI是现在国际上最为流行的测试工具,利用MBTI职业性格测试,可以清楚地找到自己的性格特点以及兴趣爱好,方便于对职业进行规划、以及改善人际关系。其主要应用心理学常识对个性做出判断,提炼出动力、信息收…...

Springcloud 微服务实战笔记 Ribbon

使用 Configurationpublic class CustomConfiguration {BeanLoadBalanced // 开启负载均衡能力public RestTemplate restTemplate() {return new RestTemplate();}}可看到使用Ribbon,非常简单,只需将LoadBalanced注解加在RestTemplate的Bean上&#xff0…...

CSS基础笔记-04cascade-specificity-inheritance

CSS基础笔记系列 《CSS基础笔记-01CSS概述》《CSS基础笔记-02动画》CSS基础笔记-03选择器 前言 Cascading Style Sheets,关键就在于这个cascading,对于这个术语理解,感觉对于我这种CSS新手有点儿不太friendly。本文记录下我对这个术语的理…...

Spring应用的部署与管理

一、前言 部署是将开发好的应用发布到服务器上,使其能够被用户访问的关键步骤。Spring框架提供了灵活的部署选项,本文将介绍Spring应用的常见部署方式和一些建议,帮助开发者顺利将应用投放到生产环境。 二、传统部署方式:WAR包 传…...

B端产品经理学习-需求挖掘

B端产品需求挖掘 目录 识别和管理干系人 决策人和负责人需求挖掘 针对用户进行需求挖掘 用户访谈结果整理 B端产品的需求来源是非常复杂的,要考虑多个方面;如果你是一个通用性的产品,要考虑市场、自身优劣势、干系人。而定制型B端产品会…...

整数规划基本原理

1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法…...

秋招复习之堆

目录 前言 堆 堆的常用操作 堆的实现(大根堆) 1. 堆的存储与表示 2. 访问堆顶元素 3. 元素入堆 4. 堆顶元素出堆 Top-k 问题 方法一:遍历选择 方法二:排序 方法三:堆 总结 前言 秋招复习之堆。 堆 「堆 heap…...

算法训练营Day36(贪心-重叠区间)

都算是 重叠区间 问题,大家可以好好感受一下。 都属于那种看起来好复杂,但一看贪心解法,惊呼:这么巧妙! 还是属于那种,做过了也就会了,没做过就很难想出来。 不过大家把如下三题做了之后&#…...

如何利用Oracle官方网站不登录账号下载和安装非最新版本的JDK(版本自由选择)

一、JDK概述 JDK(Java Development Kit)是Java开发工具集,是针对Java编程语言的软件开发环境。它包含了Java编译器、JRE(Java运行时环境)以及其他一些用于开发、调试和测试Java应用程序的工具,是Java开发人…...

税法相关的基础知识

文章目录 税法原则1.税法基本原则2.税法适用原则 来和大家聊聊税法相关的基础知识 税法原则 1.税法基本原则 2.税法适用原则...

ListNode 2487. 从链表中移除节点,单调栈的应用

一、题目 1、题目描述 给你一个链表的头节点 head 。 移除每个右侧有一个更大数值的节点。 返回修改后链表的头节点 head 。 2、接口描述 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nu…...

vue3中pdf打印问题处理

1 get请求参数问题 之前的请求是post得不到参数,今天发现的问题很奇怪,从前端进入网关,网关居然得不到参数。 前端代码 const print () > {let linkUrlStr proxy.$tool.getUrlStr(proxy.$api.invOrder.psiInvOrder.printSalOutstock,{a…...

如何向嵌入式设备中添加tcpdump工具

说明:tcpdump是一个在网络设备调试中一个非常重要的工具,它并不像hexdump等工具集成在busybox里面,也不像其他的软件一样只需要依赖linux标准的库就可以实现,它需要pcap相关的库和加密的相关库。 本文主要是基于realtek 83系列的…...

伦茨科技Apple Find My认证芯片-ST17H6x芯片

深圳市伦茨科技有限公司(以下简称“伦茨科技”)发布ST17H6x Soc平台。成为继Nordic之后全球第二家取得Apple Find My「查找」认证的芯片厂家,该平台提供可通过Apple Find My认证的Apple查找(Find My)功能集成解决方案。…...

uni-app 前后端调用实例 基于Springboot 数据列表显示实现

锋哥原创的uni-app视频教程: 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中...共计23条视频,包括:第1讲 uni…...

python渗透工具编写学习笔记:10、网络爬虫基础/多功能编写

目录 前言 10.1 概念 10.2 调度器/解析器 10.3 存储器/去重器 10.4 日志模块 10.5 反爬模块 10.6 代理模块 前言 在渗透工具中,网络爬虫有着不可忽视的作用,它能够快速而精准的搜寻、提取我们所需要的信息并按照我们所需要的格式排列,…...

网站搭建规划/英文外链seo兼职

一、docker image 的制作两种方法: 方法1:docker commit # 保持 container 的当前状态到image后,然后生成对应的 image方法2:docker build # 使用dockerfile 文件自动化制作 image 方法1:docker commi…...

秦皇岛黄金海岸/武汉网站seo

本题要求将输入的任意3个整数从小到大输出。 输入格式: 输入在一行中给出3个整数&#xff0c;其间以空格分隔。 输出格式: 在一行中将3个整数从小到大输出&#xff0c;其间以“->”相连。 输入样例: 4 2 8输出样例: 2->4->8运行代码&#xff1a; #include<st…...

python做网站设计/网站自建

用jQuery好久了&#xff0c;都做了两个项目了。今儿晚上喝咖啡喝多了&#xff0c;这都两点多了睡不着&#xff0c;给大家分享下我在项目中用到的一些用jQuery实现的一些比较好的功能。希望对一些新手有点用。。。高手们可以拍砖哈。。。。我头很硬不怕疼。。。呵呵。 一.创建一…...

山海关网站制作/免费二级域名分发网站源码

2019独角兽企业重金招聘Python工程师标准>>> 今天做了个数据库的备份脚本&#xff0c;顺便系统得学习一下Linux下定时执行脚本的设置。Linux下的定时执行主要是使用crontab文件中加入定制计划来执行&#xff0c;设置比Windows稍微复杂一些(因为没有图形界面嘛)&…...

淄博亿泰网站建设推广/产品宣传方案

字符串去除前后空格 void trim(string &s){if(!s.empty() ){s.erase(0, s.find_first_not_of(" "));s.erase(s.find_last_not_of(" ") 1);} }对map和set进行排序 可以将元素项转换为vector的元素,然后排序后输出 #include <iostream> #inclu…...

沈阳网站建设建设公司哪家好/创建属于自己的网站

6月28-29日&#xff0c;中国企业云服务大会&#xff0c;在上海小南国花园酒店正式召开。联想云、阿里云等众多产业内的领先品牌就企业云服务趋势、战略、大数据技术及应用等热门议题深度交流&#xff0c;并在展览区直观呈现云技术的落地成果。联想云存储副总经理张跃华在本次盛…...