杭州 做网站/seo咨询推广找推推蛙
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图
【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具Datax实现数据同步
目录
1、Datax概览
1.1 DataX
1.2 DataX 商业版本
1.3 Features
1.4 DataX的设计
1.5 DataX3.0框架设计
1.6 DataX3.0插件体系
1.7 Datax3.0核心架构及运行原理
1.8 核心优势
1.8.1 可靠的数据质量监控
1.8.2 丰富的数据转换功能
1.8.3 精准的速度控制
1.8.4 强劲的同步性能
1.8.5 健壮的容错机制
1.8.6 极简的使用体验
1、Datax概览
1.1 DataX
DataX 是阿里云 DataWorks数据集成 的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS, databend 等各种异构数据源之间高效的数据同步功能。
1.2 DataX 商业版本
阿里云DataWorks数据集成是DataX团队在阿里云上的商业化产品,致力于提供复杂网络环境下、丰富的异构数据源之间高速稳定的数据移动能力,以及繁杂业务背景下的数据同步解决方案。目前已经支持云上近3000家客户,单日同步数据超过3万亿条。DataWorks数据集成目前支持离线50+种数据源,可以进行整库迁移、批量上云、增量同步、分库分表等各类同步解决方案。2020年更新实时同步能力,支持10+种数据源的读写任意组合。提供MySQL,Oracle等多种数据源到阿里云MaxCompute,Hologres等大数据引擎的一键全增量同步解决方案。
商业版本参见: DataWorks_大数据开发治理平台_阿里巴巴数据治理最佳实践-阿里云
1.3 Features
DataX本身作为数据同步框架,将不同数据源的同步抽象为从源头数据源读取数据的Reader插件,以及向目标端写入数据的Writer插件,理论上DataX框架可以支持任意数据源类型的数据同步工作。同时DataX插件体系作为一套生态系统, 每接入一套新数据源该新加入的数据源即可实现和现有的数据源互通。
1.4 DataX的设计
为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
1.5 DataX3.0框架设计
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
DataX在设计之初就将同步理念抽象成框架+插件的形式.框架负责内部的序列化传输,缓冲,并发,转换等而核心技术问题,数据的采集(Reader)和落地(Writer)完全交给插件执行。
- Read 数据采集模块,负责采集数据源的数据,将数据发送至FrameWork。
- Writer 数据写入模块,负责不断的向FrameWork取数据,并将数据写入目的端。
- FrameWork 用于连接reader和write,作为两者的数据传输通道,处理缓冲,流控,并发,转换等核心技术问题。
1.6 DataX3.0插件体系
DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图:
类型 | 数据源 | Reader(读) | Writer(写) | 文档 |
---|---|---|---|---|
RDBMS 关系型数据库 | MySQL | √ | √ | 读 、写 |
Oracle | √ | √ | 读 、写 | |
OceanBase | √ | √ | 读 、写 | |
SQLServer | √ | √ | 读 、写 | |
PostgreSQL | √ | √ | 读 、写 | |
DRDS | √ | √ | 读 、写 | |
Kingbase | √ | √ | 读 、写 | |
通用RDBMS(支持所有关系型数据库) | √ | √ | 读 、写 | |
阿里云数仓数据存储 | ODPS | √ | √ | 读 、写 |
ADB | √ | 写 | ||
ADS | √ | 写 | ||
OSS | √ | √ | 读 、写 | |
OCS | √ | 写 | ||
Hologres | √ | 写 | ||
AnalyticDB For PostgreSQL | √ | 写 | ||
阿里云中间件 | datahub | √ | √ | 读 、写 |
SLS | √ | √ | 读 、写 | |
图数据库 | 阿里云 GDB | √ | √ | 读 、写 |
Neo4j | √ | 写 | ||
NoSQL数据存储 | OTS | √ | √ | 读 、写 |
Hbase0.94 | √ | √ | 读 、写 | |
Hbase1.1 | √ | √ | 读 、写 | |
Phoenix4.x | √ | √ | 读 、写 | |
Phoenix5.x | √ | √ | 读 、写 | |
MongoDB | √ | √ | 读 、写 | |
Cassandra | √ | √ | 读 、写 | |
数仓数据存储 | StarRocks | √ | √ | 读 、写 |
ApacheDoris | √ | 写 | ||
ClickHouse | √ | √ | 读 、写 | |
Databend | √ | 写 | ||
Hive | √ | √ | 读 、写 | |
kudu | √ | 写 | ||
selectdb | √ | 写 | ||
无结构化数据存储 | TxtFile | √ | √ | 读 、写 |
FTP | √ | √ | 读 、写 | |
HDFS | √ | √ | 读 、写 | |
Elasticsearch | √ | 写 | ||
时间序列数据库 | OpenTSDB | √ | 读 | |
TSDB | √ | √ | 读 、写 | |
TDengine | √ | √ | 读 、写 |
1.7 Datax3.0核心架构及运行原理
- Job 完成单个数据同步的作业称之为job。DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。负责数据清理,子任务划分,TaskGroup监控管理。
- Task 由Job切分而来,是DataX作业的最小单元,每个Task负责一部分数据的同步工作。
- Schedule 将Task组成TaskGroup,默认单个任务组的并发数量为5。
- TaskGroup 负责启动Task。
详细解说:DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务.
DataX调度流程
举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。 DataX的调度决策思路是:
- 1 DataXJob根据分库分表切分成了100个Task。
- 2 根据20个并发,默认单个任务组的并发数量为5,DataX计算共需要分配4个TaskGroup。
- 3 这里4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。
1.8 核心优势
1.8.1 可靠的数据质量监控
-
完美解决数据传输个别类型失真问题
DataX旧版对于部分数据类型(比如时间戳)传输一直存在毫秒阶段等数据失真情况,新版本DataX3.0已经做到支持所有的强数据类型,每一种插件都有自己的数据类型转换策略,让数据可以完整无损的传输到目的端。
-
提供作业全链路的流量、数据量运行时监控
DataX3.0运行过程中可以将作业本身状态、数据流量、数据速度、执行进度等信息进行全面的展示,让用户可以实时了解作业状态。并可在作业执行过程中智能判断源端和目的端的速度对比情况,给予用户更多性能排查信息。
-
提供脏数据探测
在大量数据的传输过程中,必定会由于各种原因导致很多数据传输报错(比如类型转换错误),这种数据DataX认为就是脏数据。DataX目前可以实现脏数据精确过滤、识别、采集、展示,为用户提供多种的脏数据处理模式,让用户准确把控数据质量大关!
1.8.2 丰富的数据转换功能
DataX作为一个服务于大数据的ETL工具,除了提供数据快照搬迁功能之外,还提供了丰富数据转换的功能,让数据在传输过程中可以轻松完成数据脱敏,补全,过滤等数据转换功能,另外还提供了自动groovy函数,让用户自定义转换函数。详情请看DataX3的transformer详细介绍。
1.8.3 精准的速度控制
还在为同步过程对在线存储压力影响而担心吗?新版本DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在库可以承受的范围内达到最佳的同步速度。
"speed": {"channel": 5,"byte": 1048576,"record": 10000
}
1.8.4 强劲的同步性能
DataX3.0每一种读插件都有一种或多种切分策略,都能将作业合理切分成多个Task并行执行,单机多线程执行模型可以让DataX速度随并发成线性增长。在源端和目的端性能都足够的情况下,单个作业一定可以打满网卡。另外,DataX团队对所有的已经接入的插件都做了极致的性能优化,并且做了完整的性能测试。性能测试相关详情可以参照每单个数据源的详细介绍:DataX数据源指南
1.8.5 健壮的容错机制
DataX作业是极易受外部因素的干扰,网络闪断、数据源不稳定等因素很容易让同步到一半的作业报错停止。因此稳定性是DataX的基本要求,在DataX 3.0的设计中,重点完善了框架和插件的稳定性。目前DataX3.0可以做到线程级别、进程级别(暂时未开放)、作业级别多层次局部/全局的重试,保证用户的作业稳定运行。
-
线程内部重试
DataX的核心插件都经过团队的全盘review,不同的网络交互方式都有不同的重试策略。
-
线程级别重试
目前DataX已经可以实现TaskFailover,针对于中间失败的Task,DataX框架可以做到整个Task级别的重新调度。
1.8.6 极简的使用体验
易用:下载即可用,支持linux和windows,只需要短短几步骤就可以完成数据的传输。请点击:Quick Start
详细:DataX在运行日志中打印了大量信息,其中包括传输速度,Reader、Writer性能,进程CPU,JVM和GC情况等等。
传输过程中打印传输速度、进度
传输过程中会打印进程相关的CPU、JVM
任务结束后,打印总体运行情况
参考:
GitHub - alibaba/DataX: DataX是阿里云DataWorks数据集成的开源版本。
相关文章:

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图 【大数据进阶第三阶段之Datax学习笔记】使用…...

PHP 基础编程 2
文章目录 时间函数dategetdatetime 使用数组实现登录注册和修改密码简单数组增加元素方法修改元素方法删除元素方法 具体实现方法数组序列化数组写入文件判断元素是否在关联数组中(登录功能实现)实现注册功能实现修改admin用户密码功能 时间函数 时区&am…...

git merge origin master 和 git merge origin/master 的区别
git merge origin master和git merge origin/master的区别 1. git checkout dev 2. git fetch origin master 3. git merge origin release 把 origin/master,heads/release merge到 heads/dev1. git checkout dev 2. git fetch origin master 3. git me…...

数据挖掘 模糊聚类
格式化之前的代码: import matplotlib.pyplot as plt#绘图 import pandas as pd#读取数据集 from sklearn.preprocessing import scale from sklearn.cluster import DBSCAN#聚类 from sklearn import preprocessing#数据预处理的功能,包括缩放、标准化…...

Vue2和Vue3各自的优缺点以及区别对比
Vue2和Vue3各自的优缺点以及区别对比 Vue2的优点: 成熟稳定:Vue2是一个经过长时间发展和测试的成熟版本,广泛应用于各种项目中。 生态系统丰富:由于Vue2的流行程度,它的生态系统相对较为完善,有大量的插件…...

手写一个加盐加密算法(java实现)
目录 前言 什么是MD5?? 加盐算法 那别的人会不会跟你得到相同的UUID? 如何使用盐加密? 代码实现 前言 对于我们常见的登录的时候需要用到的组件,加密是一个必不可少的东西,如果我们往数据库存放用户…...

基于Springboot的在线考试系统
点击以下链接获取源码: https://download.csdn.net/download/qq_64505944/88499371 mysql5、mysql8都可使用 内含配置教程文档,一步一步配置 Springboot所写 管理员页面 学生页面...

【React系列】JSX核心语法和原理
本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. ES6 的 class 虽然目前React开发模式中更加流行hooks,但是依然有很多的项目依然是使用类组件&#x…...

【C++初阶(九)】C++模版(初阶)----函数模版与类模版
本专栏内容为:C学习专栏,分为初阶和进阶两部分。 通过本专栏的深入学习,你可以了解并掌握C。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库&…...

Permission denied
Permission denied:权限被拒绝,没有访问文件的权限。 查询对文件的权限: ls -l 文件名称 r为可读权限,w为可写权限,x为可执行权限。 授权文件rwx,可读可写可执行权限: chmod 777 文件名称 如…...

轻松学会电脑如何录制音频
随手录音,保留证据以便后续出现问题进行判定,或者保存会议音频记录方便后续根据录音内容整理自己会议记录不足之处等等;越来越多的地方需要用到录音,那么在电脑上该如何进行音频录制呢?特别是使用比较广泛的Windows电脑…...

react antd,echarts全景视图
1.公告滚动,40s更新一次 2.echarts图标 左右轮播 60s更新一次 3.table 表格 import { useState, useEffect } from react;import Slider from react-slick; import slick-carousel/slick/slick-theme.css; import slick-carousel/slick/slick.css;import Layout fro…...

GD32 支持IAP的bootloader开发,使用串口通过Ymodem协议传输固件(附代码)
资料下载: https://download.csdn.net/download/wouderw/88714985 一、概述 关于IAP的原理和Ymodem协议,本文不做任何论述,本文只论述bootloader如何使用串口通过Ymodem协议接收升级程序并进行IAP升级,以及bootloader和主程序两个工程的配置…...

【C#】知识点实践序列之UrlEncode在线URL网址编码、解码
欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是2024年第8篇文章,此篇文章是C#知识点实践序列文章, 博主能力有限,理解水平有限,若有不对之处望指正! 地址编码大家应该比较经常遇到和使用到&…...

泽攸科技完全自主研制的电子束光刻机取得阶段性成果
国产电子束光刻机实现自主可控,是实现我国集成电路产业链自主可控的重要一环。近日,泽攸科技联合松山湖材料实验室开展的全自主电子束光刻机整机的开发与产业化项目取得重大进展,成功研制出电子束光刻系统,实现了电子束光刻机整机…...

上篇 | CDP应用篇之兴趣标签的3种破圈玩法
谈到客户洞察,在这个以客户为中心、以数据为驱动的客户经营时代,贯通数据,联动CDP客户数据平台、SCRM、会员、营销一站式的客户洞察解决方案,成为了头部房企们的万千宠爱。其中关于人群兴趣标签的破圈玩法,我们结合过往…...

智能的核心依然是哲学的三个基本问题
智能的发展与哲学的三个基本问题密切相关,作为一个复杂领域,智能涉及到人类认知和行为的模拟与复制,因而也会涉及到哲学的核心问题。 存在论:智能的存在论问题涉及到什么是智能以及智能系统的本质。这包括对于意识、思维和自主性的…...

用python实现提取word中的所有图片
你可以使用python-docx库来处理word文件,然后遍历文件中的所有形状,找到图片。 首先,你需要安装python-docx库。在命令行中输入以下命令进行安装: 复制代码 pip install python-docx 然后,你可以使用以下代码提取wo…...

CoTracker 环境配置与ORB 特征点提取结合实现视频特征点追踪
CoTracker 环境配置&与ORB 特征点提取结合实现视频特征点追踪 文章目录 CoTracker 环境配置&与ORB 特征点提取结合实现视频特征点追踪Step1:配置 CoTracker 环境Step2:运行官方的例程Step3:结合 ORB 特征点提取结果展示: …...

10000000000 大瓜背后的真相(附 PDD 算法真题)
10 个亿的大事? 京东诉阿里强迫商家「二选一」,京东胜诉,获阿里赔偿 10 亿。 很多小伙伴见到公主号开创了锐评时事板块,当天就在后台留言问我看法。 先说结论:这是一则「媒体影响力」远大于「实际意义」的报道。 首先&…...

python爬虫,简单的requests的get请求,百度搜索实例
1、百度搜索实例 import requests url https://www.baidu.com/s? # key_word 迪丽热巴 key_word input(输入搜索内容:) headers {User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537…...

UNION 和 UNION ALL
概述 UNION 和 UNION ALL 都是 SQL 中用于将多个 SELECT 语句的结果合并成一个结果集的操作符。它们都适用于需要将多个表或查询结果合并在一起的情况。但是它们的行为略有不同。 区别 UNION 和 UNION ALL 的区别在于,UNION 会将结果集合并成一个不含重复行的结果…...

NPS 内网穿透安装
NPS 内网穿透安装 NPS 内网穿透安装服务端搭建SSH配置流程 NPS 内网穿透安装 NPS分为服务端和客户端,对应的不同操作系统软件可以在GitHub RELEASES自行选择下载。 服务端搭建 由于个人非企业级使用,为了方便直接使用docker安装 1.docker运行 (注意…...

【C++学习笔记】C++多值返回写法
C不像python可以轻易地处理多值返回问题,处理使用指针或者引用将需要返回的值通过参数带出来,还有几种特殊的方式。 引用自:https://mp.weixin.qq.com/s/VEvUxpcJPsxT9kL7-zLTxg 1. Tuple tie 通过使用std::tie,我们可以将tuple…...

读取带有梯度的张量的具体的值
问题:存在一个带有梯度的张量tensor_example,怎么读取它具体的值 方法:可以使用 .detach().cpu().numpy() 的组合。这样可以在保留值的同时,将张量从计算图中分离(detach)并移动到 CPU 上。 示例…...

【分布式微服务专题】SpringSecurity快速入门
目录 前言阅读对象阅读导航前置知识笔记正文一、Spring Security介绍1.1 什么是Spring Security1.2 它是干什么的1.3 Spring Security和Shiro比较 二、快速开始2.1 用户认证2.1.1 设置用户名2.1.1.1 基于application.yml配置文件2.1.1.2 基于Java Config配置方式 2.1.2 设置加密…...

EasyRecovery2024永久免费版电脑数据恢复软件
EasyRecovery是一款操作安全、价格便宜、用户自主操作的非破坏性的只读应用程序,它不会往源驱上写任何东西,也不会对源驱做任何改变。它支持从各种各样的存储介质恢复删除或者丢失的文件,其支持的媒体介质包括:硬盘驱动器、光驱、…...

iphone 苹果 IOS 越狱详细图文保姆级教程非常简单
现在随着各个工具的升级,越狱的难度也是越来越低,还记得 iphone 4 的时候我越狱还是花钱请别人搞得,现在只要你的机型支持越狱,下个工具点一点就可以了,非常简单 目前来说整个越狱过程中,寻找合适机型是最…...

华为HarmonyOS 创建第一个鸿蒙应用 运行Hello World
使用DevEco Studio创建第一个项目 Hello World 1.创建项目 创建第一个项目,命名为HelloWorld,点击Finish 选择Empty Ability模板,点击Next Hello World 项目已经成功创建,接来下看看效果 2.预览 Hello World 点击右侧的预…...

[C#]Onnxruntime部署Chinese CLIP实现以文搜图以文找图功能
【官方框架地址】 https://github.com/OFA-Sys/Chinese-CLIP 【算法介绍】 在当今的大数据时代,文本信息处理已经成为了计算机科学领域的核心议题之一。为了高效地处理海量的文本数据,自然语言处理(NLP)技术应运而生。而在诸多N…...