卷积神经网络|猫狗分类系列--导入kaggle猫狗数据集
解决任何真实问题的重要一步是获取数据,Kaggle提供了大量不同数据科学问题的竞赛。

我们将从
https://www.kaggle.com/competitions/dogs-vs-cats/data
下载猫狗数据集,并对其进行一定的操作,以正确的导入到我们的计算机,为接下来的模型训练做准备。
数据集(带有标号的)包含25000张图片,猫狗各一半,图片格式如下:
类别.序号.jpg,比如
-
cat.1.jpg,cat.2.jpg,cat.3.jpg,....cat.12449.jpg
-
dog.1.jpg,dog.2.jpg,dog.3.jpg,.....dog.12499.jpg
共计25000张。

直接将其导入计算机显然是不行的,我们必须对图片名进行处理,接着构建自己的Dataset类。
首先对图片名进行处理:
import ospath="E:\\3-10\\source\\train\\"filenames=[name for name in os.listdir(path)]j=0k=0catList=[]dogList=[]for i,filename in enumerate(filenames):src=path+filenamenamelist=filename.split('.')if namelist[0]=='cat':j=j+1dst=namelist[0]+str(j)+'.0'+'.'+namelist[2] #猫标签设置为0catList.append(dst)#获得cat的图片名集合else:k=k+1dst=namelist[0]+str(k)+'.1'+'.'+namelist[2] #狗标签设置为1dogList.append(dst)#获得dog的图片名集合dst=path+dstos.rename(src,dst)
注:path为下载的数据集图片的路径
在这步操作后,cat和dog的图片名则变为了下列格式:
-
cat1.0.jpg,
-
cat2.0,jpg
-
cat3.0.jpg
-
....
-
cat12500.0.jpg
-
dog1.1.jpg,
-
dog2.1.jpg
-
....
-
dog12500.1.jpg
需要强调的是这里的cat1,dog1...,jpg格式仅仅是一个习惯,没有太多的含义,真正重要的是0,1,...,这是个标签,指明了这张图片的类别,并在构建Dataset类时发挥作用。0代表cat,而1代表dog。
同时,catList和dogList还分别存储了猫和狗的图片路径名程,就像这样。
-
['cat1.0.jpg', 'cat2.0.jpg', 'cat3.0.jpg', 'cat4.0.jpg', 'cat5.0.jpg'...]
-
['dog1.1.jpg', 'dog2.1.jpg', 'dog3.1.jpg', 'dog4.1.jpg', 'dog5.1.jpg'...]
之所以这样处理,是因为为了易于划分训练集和测试集。
接着,实现自己的Dataset类
import torchimport osfrom torch.utils.data import Datasetfrom torchvision import transformsfrom PIL import Imageimport numpy as npclass MyDataset(Dataset):def __init__(self,path_file,namelists,transform=None):self.path_file=path_fileself.imgs=namelistsself.transform=transformdef __len__(self):return len(self.imgs)def __getitem__(self, idx):#get the imageimg_path = os.path.join(self.path_file,self.imgs[idx])image=Image.open(img_path)image=image.resize((28,28))#修改图片大小,默认大小if self.transform:image = self.transform(image)#get the labelstr1=self.imgs[idx].split('.')label=eval(str1[1])return image, labeltrain_data=MyDataset(path,catList[0:10000]+dogList[0:10000],transform=transforms.Compose([transforms.ToTensor(),transforms.Resize((224,224))]) )test_data=MyDataset(path,catList[10000:12500]+dogList[10000:12500],transform=transforms.Compose([transforms.ToTensor(),transforms.Resize((224,224))]) )
训练集和测试集按8:2的比例划分。
导入DataLoader:
train_loader=torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)test_loader=torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=True)
测试:
#测试len(train_data)20000len(test_data)5000imgs,labels=next(iter(train_loader))imgs.size()torch.Size([32, 3, 224, 224])labels.size()torch.Size([32])labelstensor([0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,1, 0, 0, 0, 0, 1, 0, 0])
相关文章:
卷积神经网络|猫狗分类系列--导入kaggle猫狗数据集
解决任何真实问题的重要一步是获取数据,Kaggle提供了大量不同数据科学问题的竞赛。 我们将从 https://www.kaggle.com/competitions/dogs-vs-cats/data 下载猫狗数据集,并对其进行一定的操作,以正确的导入到我们的计算机,为接下…...
【linux 多线程并发】线程本地数据存储的两种方式,每个线程可以有同名全局私有数据,以及两种方式的性能分析
线程本地数据(TLS) 专栏内容: 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构,以及如何实现多机的数据库节点的多读多写,与传统主备,MPP的区别,技术难点的分析,数据元数据同步,多主节点的…...
2401d,d导入C的问题
原文 D中是否可用仅C头文件库? 在C语言中,我需要这样做: #define STB_DS_IMPLEMENTATION #include "stb_ds.h"在包含h文件前,必须在单个C文件中定义. 在D中试过: enum STB_DS_IMPLEMENTATION 1; import stb_ds;但它不管用.有建议吗?也许使用中间C文件会工作 ,但…...
SpringCloud GateWay实现路由限流
目录 RequestRateLimiterGatewayFilterFactory令牌桶算法实现限流 RequestRateLimiterGatewayFilterFactory Spring Cloud Gateway 内置了一个限流功能的过滤器工厂,那就是RequestRateLimiterGatewayFilterFactory ,它使用 Redis 和 Lua 脚本实现令牌桶…...
打印日期c++
给出年份 y和一年中的第 d天,算出第 d天是几月几号。 输入格式 输入包含多组测试数据。 每组数据占一行,包含两个整数 y 和 d。 输出格式 每组数据输出一行一个结果,格式为 yyyy-mm-dd。 数据范围 输入最多包含 100 组数据, 1≤y≤3000, 1≤d…...
数据结构入门到入土——链表(1)
目录 一,顺序表表/ArrayList的缺陷 二,链表 三,链表的实现 四,与链表有关的题目练习(1) 1.删除链表中等于给定值 val 的所有节点 2.反转一个单链表 3.给定一个带有头结点 head 的非空单链表…...
MySQL C API的使用
MySQL C API的使用 介绍及使用 MySQL C API(也称为 MySQL Connector/C)是用于与 MySQL 数据库交互的 C 语言 API。它提供了一组函数和结构体,允许你在 C 程序中连接到 MySQL 数据库服务器,并执行查询、插入、更新等数据库操作。…...
JavaScript防御性编程
简单聊一下防御性编程,初衷是开发人员为了防止自己被裁员,而将代码编写为只有自己能看懂。如何只有自己能看懂?方法多种多样,但不能将简单问题复杂化,比如:编写一堆无效的逻辑关系,或将业务复杂…...
微信预约小程序制作指南:从小白到专家
在当今的数字时代,微信小程序已经成为了一种非常流行的应用方式。预约功能更是成为了许多小程序的核心功能之一。如果你也想为你的小程序添加预约功能,以下步骤将会对你有所帮助。 一、进入乔拓云网后台 乔拓云网是一个在线小程序开发平台,你…...
向量数据库:Milvus
特性 Milvus由Go(63.4%),Python(17.0%),C(16.6%),Shell(1.3%)等语言开发开发,支持python,go,java接口(C,Rust,c#等语言还在开发中),支持单机、集群部署,支持CPU、GPU运算。Milvus 中的所有搜索和查询操作都在内存中执行…...
亚马逊国际商品详情 API:获取特定商品详细信息的实践
随着电子商务的飞速发展,亚马逊作为全球最大的在线零售商之一,提供了丰富的商品详情 API,使得第三方开发者能够轻松地获取亚马逊网站上的商品信息。本文将介绍如何使用亚马逊国际商品详情 API(Amazon Product Advertising API&…...
MSB30M-ASEMI小贴片整流桥MSB30M
编辑:ll MSB30M-ASEMI小贴片整流桥MSB30M 型号:MSB30M 品牌:ASEMI 封装:UMSB-4 最大平均正向电流:3A 最大重复峰值反向电压:1000V 产品引线数量:4 产品内部芯片个数:4 产品…...
Redis启动方式
redis三种启动方式 1.直接启动 进入redis根目录,执行命令: #加上‘&’号使redis以后台程序方式运行 ./redis-server & 2.通过指定配置文件启动 可以为redis服务启动指定配置文件,例如配置为/etc/redis/6379.conf 进入redis根目录&#x…...
TEMU 新手小白必看!2024入驻流程/入驻类目/入驻资料等详细流程讲解
2023 TEMU 可谓是赚足眼球,流量持续上涨,2024年相信不少卖家们已经跃跃欲试,但大陆卖家如何入驻TEMU?哪些品类适合入驻?又有哪些入驻要求和资料?别急,今天东哥就一一给大家详细讲解,…...
【C语言】数组
一维数组的创建和初始化 数组是一组相同类型元素的集合。 数组的创建 //数组的创建方式:type_t arr_name [const_n];//type_t 是指数组的元素类型//const_n 是一个常量表达式,用来指定数组的大小数组创建的实例: 数组创建ÿ…...
常见测试技术都有哪些?
测试技术是用于评估系统或组件的方法,目的是发现它是否满足给定的要求。系统测试有助于识别缺口、错误,或与实际需求不同的任何类型的缺失需求。测试技术是测试团队根据给定的需求评估已开发软件所使用的最佳实践。这些技术可以确保产品或软件的整体质量…...
Spring事务控制
1.事务介绍 1.1什么是事务? 当你需要一次执行多条SQL语句时,可以使用事务。通俗一点说,如果这几条SQL语句全部执行成功,则才对数据库进行一次更新,如果有一条SQL语句执行失败,则这几条SQL语句全部不进行执…...
swaggerUI不好用,试试这个openapiUI?
title: swaggerUI不好用,试试这个openapiUI? date: 2024-01-08 categories: [tool] tags: [openapi,工具] description: 基于swaggger2, openapi3规范的UI文档 1.背景 由于长期使用 swaggerUI 工具,它的轻量风格个人觉得还是不错的,但是它…...
嵌入式物联网项目开发实战例程-STM32F103系列之外围器件代码
开发STM32F103很好的参考例程,轻松实现各类外围器件的开发。持续更新中,欢迎关注及收藏。 0001基于STM32F103单片机GPIO实现控制LED灯闪烁的程序代码.zip 0002基于STM32F103单片机GPIO实现按键KEY的检测程序代码.zip 0003基于STM32F103单片机GPIO实现外部…...
Docker Compose--部署SpringBoot项目--实战
原文网址:Docker Compose--部署SpringBoot项目--实战-CSDN博客 简介 本文用实战介绍Docker Compose部署SpringBoot项目。 ----------------------------------------------------------------------------------------------- 分享Java真实高频面试题,…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
