当前位置: 首页 > news >正文

【代码随想录】刷题笔记Day47

前言

  • 又过了个愉快的周末~大组会终于不用开了,理论上已经可以回家了!但是我多留学校几天吧,回家实在太无聊了,也没太多学习的氛围

198. 打家劫舍 - 力扣(LeetCode)

  • dp[i]含义
    • 考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]
  • 递推公式:包含偷和不偷
    • dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
  • 初始化
    • dp[0] = nums[0],dp[1] = max(nums[0], nums[1]);
  • 遍历顺序:类似斐波那契,从前往后推导
  • class Solution {
    public:int rob(vector<int>& nums) {  if(nums.size() == 1) return nums[0];vector<int> dp(nums.size());dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for(int i = 2; i < nums.size(); i++){dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
    };

213. 打家劫舍 II - 力扣(LeetCode)

  • 本题难点在于将环形问题拆解成线性问题,分为三种情况
  • 情况一:考虑不包含首尾元素
  • 情况二:考虑包含首元素,不包含尾元素
  • 情况三:考虑包含尾元素,不包含首元素 
  • 情况二、三是包含情况一的,所以把掐头去尾的数组传到上一题取最大值便可
  • // 方法一:传掐头去尾的数组
    class Solution {
    public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];int result1 = robRange(nums, 0, nums.size() - 2); // 情况二int result2 = robRange(nums, 1, nums.size() - 1); // 情况三return max(result1, result2);}// 198.打家劫舍的逻辑int robRange(vector<int>& nums, int start, int end) {if (end == start) return nums[start];vector<int> dp(nums.size());dp[start] = nums[start];dp[start + 1] = max(nums[start], nums[start + 1]);for (int i = start + 2; i <= end; i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[end];}
    };
  • 还有一个很妙的方法,遍历一次,同时更新两个dp数组(掐头 + 去尾)
  • class Solution {
    public:int rob(vector<int>& nums) {int n = nums.size();if(n == 1) return nums[0];vector<int> dp1(n), dp2(n);// 掐头,考虑1 ~ n-1,取n-1dp1[0] = 0;         dp1[1] = nums[1];// 去尾,考虑0 ~ n-2,取n-2dp2[0] = nums[0];dp2[1] = max(nums[0], nums[1]);for(int i = 2; i <= n - 1; i++){dp1[i] = max(dp1[i - 2] + nums[i], dp1[i - 1]);if(i <= n - 2){dp2[i] = max(dp2[i - 2] + nums[i], dp2[i - 1]);}}return max(dp1[n - 1], dp2[n - 2]);}
    };

 337. 打家劫舍 III - 力扣(LeetCode)

  • 树形dp入门题目,记录每个节点偷和不偷的状态,递归后序遍历将最优解集中到根节点上
  • dp数组是一个长度为2的数组,在递归的过程中,系统栈会保存每一层递归的参数

  • class Solution {
    public:int rob(TreeNode* root) {vector<int> result = robTree(root);return max(result[0], result[1]);}// 长度为2的数组,0:不偷,1:偷vector<int> robTree(TreeNode* root){if(root == nullptr) return {0, 0};vector<int> left = robTree(root->left);vector<int> right = robTree(root->right);// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况int val0 = max(left[0], left[1]) + max(right[0], right[1]);// 偷cur,那么就不能偷左右节点。int val1 = root->val + left[0] + right[0];return {val0, val1};}
    };

 后言

  • 下周考科二科三,这周得频繁去练车,争取每天早上刷题、下午练车,晚上干活!

相关文章:

【代码随想录】刷题笔记Day47

前言 又过了个愉快的周末~大组会终于不用开了&#xff0c;理论上已经可以回家了&#xff01;但是我多留学校几天吧&#xff0c;回家实在太无聊了&#xff0c;也没太多学习的氛围 198. 打家劫舍 - 力扣&#xff08;LeetCode&#xff09; dp[i]含义 考虑下标i&#xff08;包括…...

6.1 截图工具HyperSnap6简介

图片是组成多媒体作品的基本元素之一&#xff0c;利用图片可以增强多媒体作品的亲和力和说说服力。截取图片最简单的方法是直接按下键盘上的“PrintScreen”键截取整个屏幕或按下“AltPrintScreen”组合键截取当前活动窗口&#xff0c;然后在画笔或者其它的图片处理软件中进行剪…...

stable diffusion 人物高级提示词(二)衣物、身材

一、衣服大类 英文中文Shirt衬衫Blouse女式衬衫Dress连衣裙Skirt裙子Pants裤子Jeans牛仔裤Swimsuit泳衣Underwear内衣Bra文胸Panties内裤Stockings长筒袜Shoes鞋子Socks袜子 二、细分分类 dress 是连衣裙&#xff1a; 英文解释Formal Dress正式礼服&#xff0c;通常用于正式…...

外包做了1个月,技术退步一大半了。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;20年通过校招进入深圳某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

docker-compose常用命令及.yaml配置模板

1、docker-compose常用命令&#xff1a; docker-compose -f mysql-docker-compose.yaml up -d docker-compose -f mysql-docker-compose.yaml downdocker-compose的常用命令包括&#xff1a; docker-compose up&#xff1a;启动并运行Compose文件中的服务。 docker-compose st…...

工作随机:OEM(13.5)报错代理无法访问

文章目录 前言一、问题排查二、重启主机agent1.定位主机安装位置2.查看并启动agent3.OEM检查 前言 今早接到反馈&#xff0c;在客户部署的OEM&#xff08;版本 13.5&#xff09;监控失效&#xff0c;提示代理无法访问&#xff0c;无法访问的除了数据库以外还有主机都显示数据不…...

Pruning Papers

[ICML 2020] Rigging the Lottery: Making All Tickets Winners 整个训练过程中mask是动态的&#xff0c;有drop和grow两步&#xff0c;drop是根据权重绝对值的大小丢弃&#xff0c;grow是根据剩下激活的权重中梯度绝对值生长没有先prune再finetune/retrain的两阶段过程 Laye…...

C#COM对象的资源释放

在C#中使用COM对象时&#xff0c;由于COM对象遵循引用计数&#xff08;Reference Counting&#xff09;的管理方式&#xff0c;当COM对象的引用计数为0时&#xff0c;系统才会真正释放该COM对象所占用的资源。然而&#xff0c;在.NET环境下&#xff0c;CLR&#xff08;Common L…...

了解Apache 配置与应用

本章内容 理解 Apache 连接保持 掌握 Apache 的访问控制 掌握 Apache 日志管理的方法 Apache HTTP Server 之所以受到众多企业的青睐&#xff0c;得益于其代码开源、跨平台、功能 模块化、可灵活定制等诸多优点&#xff0c;不仅性能稳定&#xff0c;在安全性方面的表现也十分…...

悟的复杂度分析

复杂度分析&#xff1a; 时间复杂度&#xff08;算法中的基本操作的执行次数&#xff09;&#xff1b; 空间复杂度。 时间复杂度&#xff1a; 实际上我们计算时间复杂度时&#xff0c;我们其实并不需要计算准确的执行次数&#xff0c;只需要大概的执行次数&#xff0c;因此我们…...

《网络是怎样连接的》2.5节图表(自用)

图5.1&#xff1a;ip包结构 图5.2&#xff1a;ip网络包的传输方式 1.以太网的部分也可以替换成其他的东西&#xff0c;例如无线局域网、ADSL、FTTH等&#xff0c;它们都可以替代以太网的角色帮助IP协议来传输网络包 2.根据ARP协议&#xff0c;客户端可以根据ip地址得到下一个路…...

java 音乐会售票平台系统Myeclipse开发mysql数据库struts2结构java编程计算机网页项目

一、源码特点 java 音乐会售票平台系统 是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助struts2框架开发mvc模式&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发 环境为TOCAT7.0,Myeclipse8.5开发&#xff0c;数据…...

鸿蒙开发解决agconnect sdk not initialized. please call initialize()

文章目录 项目场景:问题描述原因分析:解决方案:总结:项目场景: 鸿蒙开发报错: agconnect sdk not initialized. please call initialize() 问题描述 报错内容为: 10-25 11:41:01.152 6076-16676 E A0c0d0/JSApp: app Log: 数据查询失败: {“code”:1100001,“messag…...

秋招阿里巴巴java笔试试题-精

一、单项选择题 1、以下函数的时间复杂度是 &#xff08; &#xff09; 1 2 3 4 5 6 7 8 9 void func(int x,int y, int z){ if(x<0) printf("%d, %d\n", y, z); else { func(x-1,y1,z); func(x-1,y,z1); } } A.O(x*y*z) B.O(x^2*y^2) C.O(2^x) D.O(2^x*…...

018、通用集合类型

Rust标准库包含了一系列非常有用的被称为集合的数据结构。大部分的数据结构都代表着某个特定的值&#xff0c;但集合却可以包含多个值。 与内置的数组与元组类型不同&#xff0c;这些集合将自己持有的数据存储在了堆上。这意味着数据的大小不需要在编译时确定&#xff0c;并且可…...

【Leetcode】236.二叉树的最近公共祖先

一、题目 1、题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。” 示例1…...

C#,入门教程(11)——枚举(Enum)的基础知识和高级应用

上一篇&#xff1a; C#&#xff0c;入门教程(10)——常量、变量与命名规则的基础知识https://blog.csdn.net/beijinghorn/article/details/123913570 不会枚举&#xff0c;就不会编程&#xff01; 枚举 一个有组织的常量系列 比如&#xff1a;一个星期每一天的名字&#xf…...

java SSM水质历史数据可视化设计myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM水质历史数据可视化设计是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主…...

C++推箱子游戏开发

游戏 自动地图生成背景音乐推箱子到目标位置 美工资源 美工资源&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1MZv8pDBXdNDbXxuAAPSM-A **提取码&#xff1a;**2syq 图形库: www.easyx.cn cpp文件 #include "box_man.h" #include <conio.h> #…...

Kotlin函数式接口

函数式接口 接口只有一个抽象方法的接口&#xff0c;称为 函数式接口 functional interface&#xff0c;也叫做 Single Abstract Method(SAM) interface。 注&#xff1a;函数式接口&#xff0c;只有一个抽象方法&#xff0c;但可以有多个非抽象方法。 一、Kotlin Kotlin支持…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...