当前位置: 首页 > news >正文

使用numpy处理图片——镜像翻转和旋转

在《使用numpy处理图片——基础操作》一文中,我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。

镜像翻转

上下翻转

在这里插入图片描述

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')

请添加图片描述

左右翻转

在这里插入图片描述

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')

请添加图片描述

旋转

上面的翻转,又可以称之为镜像翻转。因为得到的图片,只有通过镜子去查看,才是正常的字。

在这里插入图片描述
而一般情况下,我们需要的是旋转,即得到的文字还是可以正确识别的。
在这里插入图片描述

向左旋转90度

向左旋转90需要通过两个步骤完成:

  1. 转置
  2. 上下镜像翻转
    在这里插入图片描述
def flip_left_90(arr):return np.flip(arr.transpose((1,0,2)), axis=0)

需要解释下transpose传递元组的意思

If specified, it must be a tuple or list which contains a permutation of [0,1,…,N-1] where N is the number of axes of a. The i’th axis of the returned array will correspond to the axis numbered axes[i] of the input. If not specified, defaults to range(a.ndim)[::-1], which reverses the order of the axes.

这句话的意思是,传递的元组要包含该数组所有的维度的值。转换的方法就是对应项相互转置。比如数组最开始时的维度表示是(0,1,2),如果给transpose传递了(1,0,2)。就意味着0维度和1维度转置,2维度保持不变。这个对我们处理图片特别重要,因为2维度保存的是RGBA信息。这个信息不能转置,否则就会导致颜色错乱。
请添加图片描述

旋转180度

旋转180度有两种方法:

  1. 两次90度左转。
  2. 上下镜像翻转后左右镜像翻转。(顺序无所谓)

在这里插入图片描述

def flip_180_with_flip_left_90(arr):return flip_left_90(flip_left_90(arr))

在这里插入图片描述

def flip_180_with_axis(arr):return np.flip(np.flip(arr, axis=1), axis=0)

请添加图片描述

向右旋转90度

向右旋转90度,也是向左旋转270度。可以拆解为:

  • 3次向左旋转
  • 1次180度旋转外加1次90度向左旋转
  • 1次90度向左旋转外加1次180度旋转
def flip_right_90_with_left_90(arr):return flip_left_90(flip_left_90(flip_left_90(arr)))def flip_right_90_with_axis_left_90(arr):return flip_left_90(flip_180_with_axis(arr))def flip_right_90_with_left_90_axis(arr):return flip_180_with_axis(flip_left_90(arr))

请添加图片描述

代码

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')def flip_180_with_flip_left_90(arr):return flip_left_90(flip_left_90(arr))def flip_180_with_axis(arr):return np.flip(np.flip(arr, axis=1), axis=0)def flip_left_90(arr):return np.flip(arr.transpose((1,0,2)), axis=0)def flip_right_90_with_left_90(arr):return flip_left_90(flip_left_90(flip_left_90(arr)))def flip_right_90_with_axis_left_90(arr):return flip_left_90(flip_180_with_axis(arr))def flip_right_90_with_left_90_axis(arr):return flip_180_with_axis(flip_left_90(arr))left90Data = flip_left_90(data)
left90Img = Image.fromarray(left90Data)
left90Img.save('flipleft90.png')right90DataFromLeft90 = flip_right_90_with_left_90(data)
right90ImgFromLeft90 = Image.fromarray(right90DataFromLeft90)
right90ImgFromLeft90.save('flipright90fromleft90.png')right90DataFromAxisLeft90 = flip_right_90_with_axis_left_90(data)
right90ImgFromAxisLeft90 = Image.fromarray(right90DataFromAxisLeft90)
right90ImgFromAxisLeft90.save('flipright90fromamxisleft90.png')right90DataFromLeft90Axis = flip_right_90_with_left_90_axis(data)
right90ImgFromLeft90Axis = Image.fromarray(right90DataFromLeft90Axis)
right90ImgFromLeft90Axis.save('flipright90fromleft90amxis.png')left180DataFromLeft90 = flip_180_with_flip_left_90(data)
left180ImgFromLeft90 = Image.fromarray(left180DataFromLeft90)
left180ImgFromLeft90.save('flip180fromleft90.png')left180DataFromAxis = flip_180_with_axis(data)
left180ImgFromAxis = Image.fromarray(left180DataFromAxis)
left180ImgFromAxis.save('flip180fromaxis.png')

参考资料

  • https://flat2010.github.io/2017/05/31/Numpy%E6%95%B0%E7%BB%84%E8%A7%A3%E6%83%91/
  • https://numpy.org/doc/stable/reference/generated/numpy.transpose.html

相关文章:

使用numpy处理图片——镜像翻转和旋转

在《使用numpy处理图片——基础操作》一文中,我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。 镜像翻转 上下翻转 from PIL import Image import numpy as np img Image.open(example.png) data np.array(img)# axis0 is vertical, a…...

HTML5 article标签,<time>...</time>标签和pubdate属性的运用

1、<article>...</article>标签的运用 article标签代表文档、页面或应用程序中独立的、完整的、可以独自被外部引用的内容。它可以是一篇博客或报竟杂志中的文章、一篇论坛帖子、一段用户评论或一个独立的插件&#xff0c;或者其他任何独立的内容。把文章正文放在h…...

Amazing OpenAI API:把非 OpenAI 模型都按 OpenAI API 调用

分享一个有趣的小工具&#xff0c;10MB 身材的小工具&#xff0c;能够将各种不同的模型 API 转换为开箱即用的 OpenAI API 格式。 让许多依赖 OpenAI API 的软件能够借助开发者能够接触到的&#xff0c;非 OpenAI 的 API 私有部署和使用起来。 写在前面 这个小工具软件写于两…...

RK3568平台开发系列讲解(驱动篇)pinctrl 函数操作集结构体讲解

🚀返回专栏总目录 文章目录 一、pinctrl_ops二、pinmux_ops三、pinconf_ops沉淀、分享、成长,让自己和他人都能有所收获!😄 pinctrl_ops:提供有关属于引脚组的引脚的信息。pinmux_ops:选择连接到该引脚的功能。pinconf_ops:设置引脚属性(上拉,下拉,开漏,强度等)。…...

vue购物车案例,v-model 之 lazy、number、trim,与后端交互

购物车案例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><script src"./js/vue.js"></script> </head> <body> <div id"d1"&…...

云原生Kubernetes: Kubeadm部署K8S 1.29版本 单Master架构

目录 一、实验 1.环境 2.K8S master节点环境准备 3.K8S master节点安装kubelet、kubeadm、kubectl 3.K8S node节点环境准备与软件安装 4.K8S master节点部署服务 5.K8S node节点部署 6.K8S master节点查看集群 7.容器网络&#xff08;CNI&#xff09;部署 8.K8S 集群…...

C++协程操作

什么是C++协程 C++中的协程是一种用户态轻量级线程,它拥有自己的上下文和栈,并且协程的切换和调度由用户定义,不需要陷入内核。如同一个进程可以拥有多个线程,一个线程也可以拥有多个协程。协程的优点在于极高的执行效率,因为协程切换不需要陷入内核,而是由用户程序定义切…...

计算机配件杂谈-鼠标

目录 基础知识鼠标的发展鼠标的左右手鼠标的显示样式鼠标的移动和可见性移动可见性 现在的我们的生活工作都基本上离不开电脑了&#xff0c;不管是你平时玩玩游戏&#xff0c;上班工作等等&#xff1b; 今天将关于鼠标的一些小的技巧分享出来&#xff0c;共勉&#xff01; 基础…...

用Python来制作一个微信聊天机器人

1. 效果展示 通过本地搭建一个flask服务器来接收信息&#xff0c;这里我简单使用展示&#xff0c;就没有对接收的信息进行处理了。 信息接收展示 发送信息展示 这里就直接使用python发送一个post请求即可&#xff0c;可以发送文字或者图片 代码展示 接收信息 #!/usr/bin/e…...

2024年第九届机器学习技术国际会议(ICMLT 2024) 即将召开

2024年第九届机器学习技术国际会议&#xff08;ICMLT 2024&#xff09;将于2024年5月24-26日在挪威奥斯陆举行。ICMLT 2024旨在讨论机器学习技术领域的最新研究技术现状和前沿趋势&#xff0c;为来自世界各地的科学家、工程师、实业家、学者和其他专业人士提供一个互动和交流的…...

算法训练day9Leetcode232用栈实现队列225用队列实现栈

今天学习的文章和视频链接 https://programmercarl.com/%E6%A0%88%E4%B8%8E%E9%98%9F%E5%88%97%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 栈与队列理论基础 见我的博客 https://blog.csdn.net/qq_36372352/article/details/135470438?spm1001.2014.3001.5501 232用栈实现…...

linux驱动(四):platform

本文主要探讨x210驱动的平台设备类型(platform)以及misc设备。 驱动模型 设备驱动模型&#xff1a;总线(bus type)、设备(device)和驱动(driver) 总线&#xff1a;虚拟总线用于挂接驱动驱动和设备 总线、设备、驱动关系&#xff1a;/sys/bus下的子目录…...

Guava:Cache强大的本地缓存框架

Guava Cache是一款非常优秀的本地缓存框架。 一、 经典配置 Guava Cache 的数据结构跟 JDK1.7 的 ConcurrentHashMap 类似&#xff0c;提供了基于时间、容量、引用三种回收策略&#xff0c;以及自动加载、访问统计等功能。 基本的配置 Testpublic void testLoadingCache() th…...

#{}和${}的区别?

#{}是占位符&#xff0c;预编译处理&#xff1b;${}是拼接符&#xff0c;字符串替换&#xff0c;没有预编译处理。Mybatis在处理#{}时&#xff0c;#{}传入参数是以字符串传入&#xff0c;会将SQL中的#{}替换为?号&#xff0c;调用PreparedStatement的set方法来赋值。Mybatis在…...

string的模拟实现

string的模拟实现 msvc和g下的string内存比较成员变量构造函数与析构函数拷贝构造函数赋值拷贝c_str、size和capacity函数以及重载[]、clear、expand_capacity迭代器与遍历reservepush_back、append、insert字符串比较运算符erase<<流提取 >>流插入resizefindsubst…...

算法练习:查找二维数组中的目标值

题目&#xff1a; 编写一个高效的算法来搜索矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a;每行的元素从左到右升序排列。每列的元素从上到下升序排列。 实现&#xff1a; 1. main方法 public static void main(String[] args) {int[][] matrix {{1…...

考研自命题资料、考题如何找

这篇文章是抖音和b站上上传的同名视频的原文稿件&#xff0c;感兴趣的csdn用户可以关注我的抖音和b站账号&#xff08;GeekPower极客力量&#xff09;。同时这篇文章也为视频观众提供方便&#xff0c;可以更加冷静地分析和思考。文章同时在知乎发表。 去年我发布了一个视频&am…...

MySQL 存储引擎和索引类型介绍

1. 引言 MySQL 是一个流行的关系型数据库管理系统&#xff0c;提供多种存储引擎以满足不同的业务需求。本文将介绍几种常见的 MySQL 存储引擎和索引类型比较&#xff0c;并给出相应的示例。 2. 存储引擎概述 2.1 InnoDB 存储引擎 InnoDB 是 MySQL 的默认存储引擎&#xff0…...

element-ui table height 属性导致界面卡死

问题: 项目上&#xff0c;有个点击按钮弹出抽屉的交互, 此时界面卡死 原因分析: 一些场景下(父组件使用动态单位/弹窗、抽屉中使用), element-ui 的 table 会循环计算高度值, 导致界面卡死 github 上的一些 issues 和解决方案: Issues ElemeFE/element GitHub 官方讲是升…...

Vue2.v-指令

v-if 在双引号中写判断条件。 <div v-if"score>90">A</div> <div v-else-if"score>80">B</div> <div v-else>C</div>v-on: :冒号后面跟着事件。 为了简化&#xff0c;可以直接用代替v-on:。 事件名“内联语…...

Java中SpringBoot组件集成接入【Knife4j接口文档(swagger增强)】

Java中SpringBoot组件集成接入【Knife4j接口文档】 1.Knife4j介绍2.maven依赖3.配置类4.常用注解使用1.实体类及属性(@ApiModel和@ApiModelProperty)2.控制类及方法(@Api、@ApiOperation、@ApiImplicitParam、 @ApiResponses)3.@ApiOperationSupport注解未生效的解决方法5.…...

继承和多态的详解

文章目录 1. 继承1.1 继承的概念1.3 继承的语法1.3 父类成员访问1.3.1 子类中访问父类的成员变量1.3.2 子类中访问父类的成员方法 1.4 子类构造方法 2.super关键字2.1 super关键字的概念2.2 super和this的区别 3. 在继承中访问限定符的可见性4. 继承方式的分类5. 多态5.1 多态的…...

【Unity】UniTask(异步工具)快速上手

UniTask(异步工具) 官方文档&#xff1a;https://github.com/Cysharp/UniTask/blob/master/README_CN.md URL:https://github.com/Cysharp/UniTask.git?pathsrc/UniTask/Assets/Plugins/UniTask 优点&#xff1a;0GC&#xff0c;可以在任何地方使用 为Unity提供一个高性能&…...

k8s三种常用的项目发布方式

k8s三种常用的项目发布方式 1、 蓝绿发布 2、 金丝雀发布(灰度发布)&#xff1a;使用最多 3 、滚动发布 应用程序升级&#xff0c;面临的最大问题是新旧业务之间的切换。 项目的生命周期&#xff1a;立项----定稿----需求发布----开发----测试-----发布 最后测试之后上线。再…...

Nodejs搭配axios下载图片

新建一个文件夹&#xff0c;npm i axios 实测发现只需保留node_modules文件夹&#xff0c;删除package.json不影响使用 1.纯下载图片 其实该方法不仅可以下载图片&#xff0c;其他的文件都可以下载 const axios require(axios) const fs require(fs) var arrPic [https:…...

强化学习在生成式预训练语言模型中的研究现状简单调研

1. 绪论 本文旨在深入探讨强化学习在生成式预训练语言模型中的应用&#xff0c;特别是在对齐优化、提示词优化和经验记忆增强提示词等方面的具体实践。通过对现有研究的综述&#xff0c;我们将揭示强化学习在提高生成式语言模型性能和人类对话交互的关键作用。虽然这些应用展示…...

python_selenium_安装基础学习

目录 1.为什么使用selenium 2.安装selenium 2.1Chrome浏览器 2.2驱动 2.3下载selenium 2.4测试连接 3.selenium元素定位 3.1根据id来找到对象 3.2根据标签属性的属性值来获取对象 3.3根据xpath语句来获取对象 3.4根据标签的名字获取对象 3.5使用bs4的语法来获取对象…...

面试宝典进阶之关系型数据库面试题

D1、【初级】你都使用过哪些数据库&#xff1f; &#xff08;1&#xff09;MySQL&#xff1a;开源数据库&#xff0c;被Oracle公司收购 &#xff08;2&#xff09;Oracle&#xff1a;Oracle公司 &#xff08;3&#xff09;SQL Server&#xff1a;微软公司 &#xff08;4&#…...

Agisoft Metashape 地面点分类参数设置

Agisoft Metashape 点云分类之地面点分类参数设置 文章目录 Agisoft Metashape 点云分类之地面点分类参数设置前言一、分类地面点参数二、农村及城区有房屋地区二、植被区域分类三、侵蚀半径(Erosion radius)参数设置前言 Agisoft Metashape提供了自动检测地面点的功能,减少…...

计算机科学速成课【学习笔记】(4)——二进制

本集课程B站链接&#xff1a; 4. 二进制-Representing Numbers and Letters with Binary_BiliBili_哔哩哔哩_bilibili4. 二进制-Representing Numbers and Letters with Binary_BiliBili是【计算机科学速成课】[40集全/精校] - Crash Course Computer Science的第4集视频&…...

专门做网站制作的公司/广告seo是什么意思

Android的应用组件 应用组件是 Android 应用的基本构建基块。 共有四种不同的应用组件类型。每种类型都服务于不同的目的&#xff0c;并且具有定义组件的创建和销毁方式的不同生命周期。 活动Activity服务Service广播接收器(Broadcast Receiver)内容提供程序(Content Provide…...

深圳求做网站/品牌运营

1. 使用原生input的标签,type为file <template><form><inputrefupload_sheetplaceholder"请输入内容"type"file"accept"*"id"sheet_form"click"resetValue"change"temUpload($event)"/></f…...

和恶魔做交易的网站/西安优化外包

ssh推送.py程序到CentOS7服务器端运行出现lost connection错误 (base) F:\workspace>dir 驱动器 F 中的卷是 新加卷 卷的序列号是 C2B9-6277 F:\workspace 的目录2019/03/13 16:44 <DIR> .2019/03/13 16:44 <DIR> ..2019/03/13 16:47 <DIR> .idea2019/03/…...

荆门市城乡建设管理局网站/数据分析报告

吉哥系列故事——完美队形II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1012 Accepted Submission(s): 358 Problem Description吉哥又想出了一个新的完美队形游戏&#xff01;假设有n个人按顺序站在他的面…...

模板网站建设价格/网络营销的特点不包括

陌生了&#xff01;以前痴迷的技术&#xff0c;可我仍想拾起&#xff01;转载于:https://blog.51cto.com/mmgsdxb/317666...

河南省建设监理协会网站证书查询/苏州网站建设书生

python的if判断补充 exit_flag False # 标识符if exit_flag False:print(exit_flag False)exit_flag Trueelse:print(exit_flag True) 你们能猜到这个程序的运行结果对不对&#xff1f; exit_flag False 那么&#xff0c;我想让第10行的print(exit_flag True)也执行怎么…...