代码随想录算法训练营day48 | 动态规划 121 买卖股票的最佳时机 122 买卖股票的最佳时机II
day48
- 121. 买卖股票的最佳时机
- 1.确定dp数组(dp table)以及下标的含义
- 2.确定递推公式
- 3.dp数组如何初始化
- 4.确定遍历顺序
- 5.举例推导dp数组
- 122.买卖股票的最佳时机II
121. 买卖股票的最佳时机
题目链接
解题思路:
动规五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?
其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
2.确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:
dp[i - 1][0] - 第i天买入股票,所得现金就是买入今天的股票后所得现金即:
-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:
dp[i - 1][1] - 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:
prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
3.dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5.举例推导dp数组
以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

dp[5][1]就是最终结果。
为什么不是dp[5][0]呢?
因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!
以上分析完毕,C++代码如下:
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
};
122.买卖股票的最佳时机II
题目链接
解题思路:
本题和121. 买卖股票的最佳时机 的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)
代码如下:
class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
};
大家可以本题和121. 买卖股票的最佳时机的代码几乎一样,唯一的区别在:
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。
相关文章:
代码随想录算法训练营day48 | 动态规划 121 买卖股票的最佳时机 122 买卖股票的最佳时机II
day48121. 买卖股票的最佳时机1.确定dp数组(dp table)以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组122.买卖股票的最佳时机II121. 买卖股票的最佳时机 题目链接 解题思路: 动规五部曲分析如下:…...
MediaTek 天玑 8000 5G移动平台详细参数
MediaTek 天玑 8000 移动平台 采用先进的 台积电 5nm 工艺,拥有出众的性能和能效,为高端智能手机用户提供出色的高帧率游戏和 5G 移动体验。 天玑 8000 采用了 MediaTek 诸多先进技术,内置 MediaTek Imagiq 780影像引擎、第五代 AI 处理器APU…...
Kafka
这里写目录标题1.Kafka1.1 Kafka概述1.2 kafka安装和配置1.3 入门案例1.4 kafka生产者详解1.4.1 生产者的参数1.Kafka 1.1 Kafka概述 Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。 producer:发布消息的对象称之为主题生产者(Ka…...
数据结构——第三章 栈与队列(2)
栈的运用1.括号匹配2.表达式求值2.1.算术表示式的形式2.2.后缀表达式求值2.3.将算术表达式转换为后缀表达式2.4.算术表达式直接求值3.栈与递归3.1.递归算法3.2.栈与函数调用3.3.递归工作与递归函数3.4.递归到非递归的转换1.括号匹配 void matching(char str[]) {//创建空栈Lin…...
【Linux学习】基础IO——理解缓冲区 | 理解文件系统
🐱作者:一只大喵咪1201 🐱专栏:《Linux学习》 🔥格言:你只管努力,剩下的交给时间! 基础IO☕理解缓冲区🧃缓冲区的共识🧃缓冲区的位置🧃缓冲区的刷…...
RHCSA-重置root密码(3.3)
方法1:rd.break (1)首先重启系统,在此页面按e键,在屏幕上显示内核启动参数 (2)知道linux这行,末尾空格后输入rd.break,然后按ctrlx (3)查看&#…...
无公网IP快解析实现U+随时随地访问
现阶段商品从生产到消费者手中要经过多个环节,为实现对每一个环节进行管理,越来越多的企业选择通过信息化手段来实现。供应链管理系统配合供应链中各实体的业务需求,使操作流程和信息系统紧密配合,做到各环节无缝链接,…...
UVa 307 Sticks 木棍拼接 ID 迭代加深搜
题目链接:Sticks 题目描述: 小明一开始有一些长度相等的木棍,小明现在将木棍砍成了一些长度为整数的木棍,他现在忘记了最开始木棍的长度,你需要找到最短的可能木棍长度,例如给定5,2,1,5,2,1,5,2,15,2,1,5,2…...
阿里云(CentOS)中MySQL8忘记密码的解决方法
阿里云(CentOS)中MySQL8忘记密码的解决方法 方法 在 skip-grant-tables 模式下启动 MySQL,该模式下启动 MySQL 时不启动授权表功能,可以直接免密码登录 实现 编辑 /etc/my.cnf 文件 vim /etc/my.cnf在 [mysqld] 区域末尾添加配置,设置免密…...
三、Spring的入门程序
第一个Spring程序 创建新的空工程spring6 设置JDK版本17,编译器版本17 设置IDEA的Maven:关联自己的maven 在空的工程spring6中创建第一个maven模块:spring6-001-first 在pom.xml添加spring context依赖和junit依赖, <?x…...
摘录一下Python列表和元组的学习笔记
1 基础概念 列表一个值,列表值指的是列表本身,而不是列表中的内容 列表用[]表示 列表中的内容称为 表项 len()函数可以显示列表中表项的个数,比如下面这个例子 spam [cat, bat, dog, rat]print(len(spam))列表的范围选取中,比…...
【量化金融】收益率、对数收益率、年华收益、波动率、夏普比率、索提诺比率、阿尔法和贝塔、最大回撤
【量化金融】收益率、对数收益率、年华收益、波动率、夏普比率、索提诺比率、阿尔法和贝塔、最大回撤 1 收益率 在学术界,建模一般不直接使用资产价格,而是使用资产收益率(Returns)。因为收益率比价格具有更好的统计特性,更便于建模。下经典…...
1_机器学习概述—全流程
文章目录1 机器学习定义2 机器学习常见应用框架(重点)3 机器学习分类3.1 监督学习(Supervised learning)3.2 无监督学习(Unsupervised learning)3.3 半监督学习(Semi-Supervised Learning&#…...
VUE中给对象添加新属性时,界面不刷新怎么办
一、直接添加属性的问题 举例: 定义一个p标签,通过v-for指令进行遍历 然后给botton标签绑定点击事件,我们预期点击按钮时,数据新增一个属性,界面也 新增一行。 <p v-for"(value,key) in item" :key&qu…...
视频号频出10w+,近期爆红的账号有哪些?
回顾2月,视频号持续放出大动作,不仅进行了16小时不间断的NBA全明星直播,还邀请国际奥委会入驻,分享奥运的最新资讯。视频号成为越来越多官方机构宣传推广的有效渠道。官方积极入驻,内容创作生态也在同步繁荣发展&#…...
企业寄件现代化管理教程
现代化企业为了跟上时代发展的步伐,在不断完善着管理制度,其中公司寄件管理,也是重要的一个模块。为了提高公司快递的寄件效率,以及节约寄件成本,实现快递寄件的规范化,越来越多的现代化企业,开…...
django 在网页显示后台进度
1、定义函数打开网页 def PeformanceIndex(request): citys{‘wuhu’: ‘芜湖’, ‘xuancheng’: ‘宣城’, ‘tongling’: ‘铜陵’, ‘suzhou’: ‘宿州’, ‘maanshan’: ‘马鞍山’, ‘liuan’: ‘六安’, ‘huainan’: ‘淮南’, ‘huabei’: ‘淮北’, ‘hefei’: ‘合肥…...
机器学习库(Numpy, Scikit-learn)
Numpy 创建数组 import numpy as npa np.array([1,2,3]) b np.array([(1.5,2,3), (4,5,6)], dtype float) c np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],dtype float)创建占位符 z1np.zeros((3,4)) z2np.ones((2,3,4),dtypenp.int16) z3d np.arange(10,25,5)…...
Linux操作系统学习(进程替换)
文章目录进程替换进程替换是什么?替换的方法进程替换简易shell模拟进程替换 进程替换是什么? 如下图所示: 进程替换就是,把进程B的代码和数据,替换正在执行的进程A的代码和数据在内存中的位置(若代码…...
【C++从入门到放弃】类和对象(中)———类的六大默认成员函数
🧑💻作者: 情话0.0 📝专栏:《C从入门到放弃》 👦个人简介:一名双非编程菜鸟,在这里分享自己的编程学习笔记,欢迎大家的指正与点赞,谢谢! 类和对…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
