基于BP神经网络的租金预测
目录
摘要
BP神经网络参数设置及各种函数选择
参数设置
训练函数
传递函数
学习函数
性能函数
显示函数
前向网络创建函数
BP神经网络训练窗口详解
训练窗口例样
训练窗口四部详解
基于BP神经网络的租金预测
代码下载:基于BP神经网络的租金预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88731170
效果图
结果分析
摘要
本文总结BP神经网络的参数设置,训练函数,传递函数,学习函数,画图函数,性能函数,创建函数,详解nntraintool训练窗口,基于基于BP神经网络的租金预测,实现BP神经网络的编程
BP神经网络参数设置及各种函数选择
参数设置
1,最大迭代次数net.trainParam.epochs,一般先设置大,然后看训练收敛情况,如果提前收敛,最大迭代次数就改小,以到达训练目标为目的设置。
2,学习率net.trainParam.lr,一般设置0.01–0.5,数据越多,数据噪声越大,数据越难拟合,数值一般需要越小,设置太大,容易过早停止收敛。
3,学习目标net.trainParam.goal,根据训练测试的情况进行调整,过大容易过拟合,测试效果差,过小达不到想要的效果
相关文章:
基于BP神经网络的租金预测
目录 摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的租金预测 代码下载:基于BP神经网络的租金预测(代码完整,数据齐全)资源-CS…...
C语言学习记录—进阶作业(通讯录文件版本)
通讯录 1. 添加一个函数,在退出通讯录的时候把信息到保存到文件中 2. 添加一个函数,在通讯录打开的时候,可以把文件中的信息加载到通讯录中 contact.h文件 #pragma once #include <string.h> #include <stdio.h> #include <…...
深度学习笔记(四)——TF2构建基础网络常用函数+简单ML分类网络实现
文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 TF2基础常用函数 1、张量处理类 强制数据类型转换: a1 tf.constant([1,2,3], dtypetf.floa…...
GPT function calling v2
原文:GPT function calling v2 - 知乎 OpenAI在2023年11月10号举行了第一次开发者大会(OpenAI DevDays),其中介绍了很多新奇有趣的新功能和新应用,而且更新了一波GPT的API,在1.0版本后的API调用与之前的0.…...
【Golang】IEEE754标准二进制字符串转为浮点类型
IEEE754介绍 IEEE 754是一种标准,用于表示和执行浮点数运算的方法。在这个标准中,单精度浮点数使用32位二进制表示,分为三个部分:符号位、指数位和尾数位。 符号位(s)用一个位来表示数的正负,0表示正数,1表…...
【开源项目】轻量元数据管理解决方案——Marquez
大家好,我是独孤风。 又到了本周的开源项目推荐。最近推荐的元数据管理项目很多,但是很多元数据管理平台的功能复杂难用。 那么有没有轻量一点的元数据管理项目呢? 今天为大家推荐的开源项目,就是一个轻量级的元数据管理工具。虽然…...
dirty file page
转自:https://www.cnblogs.com/zhiminyu/p/17330763.html 0.前言 Linux 内核Page Cache 和Buffer Cache 关系及演化历史 一文中讲过Linux 2.4之后将Page Cache和Buffer Cache 进行了融合,在buffer_head 中添加了b_page,很容易就能找到缓存的…...
HTAP(Hybrid Transactional/Analytical Processing)系统之统一存储的实时之道
文章目录 HTAP与时俱进LASER中的存储关键知识LSM(Log-Structured Merge Tree)SkipList(跳表)CDC(Changed Data Capture)SST(Sorted Sequence Table) 特性列组(Column Gro…...
【linux】tcpdump 使用
tcpdump 是一个强大的网络分析工具,可以在 UNIX 和类 UNIX 系统上使用,用于捕获和分析网络流量。它允许用户截取和显示发送或接收过网络的 TCP/IP 和其他数据包。 一、安装 tcpdump 通常是默认安装在大多数 Linux 发行版中的。如果未安装,可…...
数字图像处理常用算法的原理和代码实现详解
本专栏详细地分析了常用图像处理算法的数学原理、实现步骤。配有matlab或C实现代码,并对代码进行了详细的注释。最后,对算法的效果进行了测试。相信通过这个专栏,你可以对这些算法的原理及实现有深入的理解! 如有疑问…...
Pandas实战100例 | 案例 26: 检测异常值
案例 26: 检测异常值 知识点讲解 在数据分析中,检测和处理异常值(或离群值)是一个重要的步骤。异常值可能会影响数据的整体分析。一种常用的方法是使用四分位数和四分位数间距(IQR)来识别异常值。 四分位数和 IQR: …...
C语言学习NO.11-字符函数strlen,strlen函数的使用,与三种strlen函数的模拟实现
(一)strlen函数的使用 strlen函数的演示 #include <stdio.h> #include <string.h>int main() {char arr1[] "abcdef";char arr2[] "good";printf("arr1 %d,arr2 %d",strlen(arr1),strlen(arr2));return …...
Vue3+ts获取props的值并且定义props值的类型的方法。
1.引入withDefaults模块,给defineProps绑定默认值。 import { withDefaults } from vue2.定义Props传输值的类型。 interface Props {// 类型type: string;name: string;id: number; }3.给props的值设置默认值。 const props withDefaults(defineProps<Prop…...
EasyExcel 不使用科学计数发并以千分位展示
EasyExcel 不使用科学计数发并以千分位展示 不使用科学计数法 不使用科学计数法 BigDecimalStringConverter 将 BigDecimal 类型的数值转换为字符串类型,并将其导出到 Excel 文件中。在 convertToExcelData 方法中,我们将 BigDecimal 转换为字符串&…...
【Python机器学习】SVM——调参
下面是支持向量机一个二维二分类数据集的训练结果: import mglearn import matplotlib.pyplot as plt from sklearn.svm import SVCplt.rcParams[font.sans-serif] [SimHei] plt.rcParams[axes.unicode_minus] False X,ymglearn.tools.make_handcrafted_dataset()…...
网络传输(TCP)
前言 我们tcpdump抓包时会看到除报文数据外,前面还有一段其他的数据,这段数据分为两部分,ip包头(一般20字节)和tcp包头(一般20字节),一般这两个头长度和为40,我们直接跳…...
MFC模拟消息发送,自定义以及系统消息
在MFC框架下,有很多系统已经定义好的消息,例如ON_WM_LBUTTONDOWN()、ON_WM_MBUTTONDOWN()等等。我们在使用的时候只需要声明并调用就可以了,最简单的用法。 提升了一点难度的用法就是自己设置自定义消息,再提升一点难度的就是如何…...
并发,并行,线程与UI操作
并行和并发是计算机领域中两个相关但不同的概念。 并行(Parallel)指的是同时执行多个任务或操作,它依赖于具有多个处理单元的系统。在并行计算中,任务被分成多个子任务,并且这些子任务可以同时在不同的处理单元上执行…...
react 6种方式编写样式
在React中,编写样式主要有以下几种方式: 1. 内联样式: 直接在React组件中使用style属性来定义样式。这种方式比较适合定义动态的样式,因为它允许你将JavaScript表达式作为样式的值。 2. 外部样式表 :通过创建外部的…...
计算机找不到msvcr100.dll的多种解决方法分享,轻松解决dll问题
msvcr100.dll作为系统运行过程中不可或缺的一部分,它的主要功能在于提供必要的运行时支持,确保相关应用程序能够顺利完成编译和执行。因此,当操作系统或应用程序在运行阶段搜索不到该文件时,自然会导致各类依赖于它的代码无法正常…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
