Tensor Core的一些概念理解
英伟达的GPU产品架构发展如下图,Tensor Core是从2017年的Volta架构开始演变的针对AI模型大量乘加运算的特殊处理单元。本文主要梳理一些关于Tensor Core的一些基础概念知识。

什么是混合精度?
混合精度在底层硬件算子层面,使用半精度(FP16)作为输入和输出,使用全精度(FP32)进行中间结果计算从而不损失过多精度的技术。这个底层硬件层面其实指的就是Tensor Core,所以GPU上有Tensor Core是使用混合精度训练加速的必要条件。

CUDA Core和Tensor Core的区别
对CUDA Core来说,GPU并行模式实现深度学习模型的功能过于通用,比如常见的conv/GEMM操作,被编码为FMA(fused multiply-add)实现,硬件层面会把数据按照:寄存器-ALU-寄存器-ALU-寄存器,方式来回搬运。并且一个时钟周期完成一个FMA。
Tensor Core则对深度学习模型常见的conv/GEMM 提供可编程矩阵乘法和累加单元(matrix-multiply-and-accumulate units),可为AI训练和推理提供较高的Tensor TFLOPS算力。一个时钟周期可以完成多个FMA操作。
什么是CUDA中的bank冲突?
共享内存和bank: 在CUDA架构中,共享内存是一个非常快速的内存类型,它位于每个线程块内部并为该线程块内的所有线程提供服务。为了实现高吞吐量的访问,共享内存被划分为多个独立的存储区域,称为“banks”。每个bank可以在单个时钟周期内独立地服务一个线程。
bank冲突: 当两个或更多的线程在同一时钟周期内尝试访问同一个bank中的不同地址时,就会发生bank冲突。由于每个bank在一个时钟周期内只能服务一个线程,因此这些访问会被序列化,导致延迟。
例如,假设有两个线程在同一时钟周期内访问第一个bank中的不同地址。第一个线程的访问会被立即处理,而第二个线程的访问则需要等待下一个时钟周期。这就导致了额外的延迟,从而降低了性能。
避免bank冲突: 为了避免bank冲突,程序员需要仔细设计数据的访问模式和数据的布局。理想的情况是,同一时钟周期内的所有线程访问的地址分布在不同的banks上,这样每个线程的访问都可以在一个时钟周期内被处理,从而实现最大的吞吐量。
参考:
Releases · chenzomi12/DeepLearningSystem · GitHub
CUDA 中的 bank 冲突 是什么? - 知乎
相关文章:
Tensor Core的一些概念理解
英伟达的GPU产品架构发展如下图,Tensor Core是从2017年的Volta架构开始演变的针对AI模型大量乘加运算的特殊处理单元。本文主要梳理一些关于Tensor Core的一些基础概念知识。 什么是混合精度? 混合精度在底层硬件算子层面,使用半精度…...
Git与VScode联合使用详解
目录 Git与VScode联合使用 方式一 1. 用vscode打开文件夹,如图点击初始化仓库,把此仓库初始为git仓库。 2. 提交文件到本地仓库 3. vscode与github账号绑定 4. 在github中建立远程仓库 5. 本地仓库与远程仓库绑定 方式二 1. 在github上建立远程仓…...
SQL Server 加密 view文本
CREATE VIEW dbo.View_building WITH ENCRYPTION AS SELECT * FROM Building_Temp; GO 注意: 加密後就看不到VIEW文本了,修改 ALTER VIEW dbo.View_building WITH ENCRYPTION AS –修改後的VIEW 文本 GO 或者刪除再新增。 所以,要另備份原V…...
Linux查看物理CPU个数、核数、逻辑CPU个数
文章目录 总核数总逻辑CPU数查看物理CPU个数查看每个物理CPU中core的个数(即核数)查看逻辑CPU的个数 总核数 总核数 物理CPU个数 X 每颗物理CPU的核数 总逻辑CPU数 总逻辑CPU数 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 查看物理CPU个数 cat /proc/cpuinfo| grep “…...
python使用单例模式加载config.ini配置文件
在Python中,可以使用单例模式来加载和管理配置文件。下面是一个示例代码: import configparserclass ConfigLoader:__instance Nonedef __init__(self):if ConfigLoader.__instance is not None:raise Exception("ConfigLoader is a singleton cl…...
牛刀小试---二分查找(C语言)
题目:在给定的升序数组中查找指定的数字n,并输出其下标 代码举例: #include <stdio.h> int main() {int arr[] { 1,2,3,4,5,6,7,8,9,10 };//给定的升序数组int left 0;//定义左下标int right sizeof(arr) / sizeof(arr[0]) - 1;//…...
k8s-数据卷
存储卷----数据卷 容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的,delete,k8s用控制创建的pod,delete相当于重启,容器的状态也会恢复到初识状态 一旦容器回到初始状态,所有得分后天编辑的文件…...
Linux学习记录——사십삼 高级IO(4)--- Epoll型服务器
文章目录 1、理解Epoll和对应接口2、实现 1、理解Epoll和对应接口 poll依然需要OS去遍历所有fd。一个进程去多个特定的文件中等待,只要有一个就绪,就使用select/poll系统调用,让操作系统把所有文件遍历一遍,哪些就绪就加上哪些fd…...
6.4、SDN在云数据中心的应用案例分析
云数据中心中的虚拟子网包含网关和IP网段,IP分配给各个服务器,服务器间能够互相通信或通过网关访问外部网络。 在SDN云数据中心内,用户可以随时订购任意网段的虚拟子网,而且这些子网是可以在不同用户之间复用的,也就是说,不同用户可以使用相同的私有网段。 SDN云数据中心…...
SpringBoot整合ES
1.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> <version>2.6.3</version> </dependency> 2.config配置文件 Configu…...
Pandas实战100例 | 案例 10: 应用函数 - 使用 `apply`
案例 10: 应用函数 - 使用 apply 知识点讲解 Pandas 的 apply 函数是一个非常强大的工具,允许你对 DataFrame 中的行或列应用一个函数。这对于复杂的数据转换和计算非常有用。你可以使用 apply 来执行任意的函数,这些函数可以是自定义的,也…...
《C++大学教程》4.13汽油哩数
题目: 每位司机都关心自己车辆的行车里程数。有位司机通过记录每次出行所行驶的英里数和用油的加仑数来跟踪他多次出车的情况。请开发一个C程序,它使用一条while语句输入每次出车的行驶英里数和加油量。该程序应计算和显示每次出车所得到的每加仑行驶英里数&#x…...
OpenGL排坑指南—贴图纹理绑定和使用
一、前言 在OpenGL学习 的纹理这一章中讲述了纹理贴图的使用方式,主要步骤是先创建一个纹理的对象,和创建顶点VAO类似,然后就开始绑定这个纹理,最后在循环中使用,有时候可能还要用到激活纹理单元的函数。然而ÿ…...
Electron中 主进程(Main Process)与 渲染进程 (Renderer Process) 通信的方式
1. 渲染进程向主进程通信 修改 html 文件内容 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><!-- 解决控制…...
企业微信forMAC,如何左右翻动预览图片
1、control commandshifd 进入企业微信的debug调试模式 2、按照如下步骤选择 3、重启企业微信...
Android Firebase (FCM)推送接入
官方文档: 向后台应用发送测试消息 | Firebase Cloud Messaging 1、根级(项目级)Gradlegradle的dependencies中添加: dependencies {...// Add the dependency for the Google services Gradle pluginclasspath com.google.gm…...
Neo4j恢复
主要记录windows环境下从备份文件中恢复Neo4j, Linux环境同理 备份在上一篇中有介绍,参考: Neo4j备份-CSDN博客 误删数据 为了模拟误删除场景,我们查询Person,并模拟误操作将其进行删除; match(p:Person) return …...
ZZULIOJ 1114: 逆序
题目描述 输入n(1<n<10)和n个整数,逆序输出这n个整数。 输入 输入n(1<n<10),然后输入n个整数。 输出 逆序输出这n个整数,每个整数占4列,右对齐。 样例输入 Copy …...
Linux前后端项目部署
目录 1.jdk&tomcat安装 配置并且测试jdk安装 修改tomcat 配置文件 登入tomcat 发布 安装mysql 导入sql数据 发布项目war包 redis安装 nginx安装 配置nginx域名映射 部署前端项目 centos 7的服务安装 安装jdk 安装tomcat 安装Mysql 安装redis 安装nginx 前后…...
GPT-4与DALL·E 3:跨界融合,开启绘画与文本的新纪元
在人工智能的发展浪潮中,MidTool(https://www.aimidtool.com/)的GPT-4与DALLE 3的集成代表了一个跨越式的进步。这一集成不仅仅是技术的结合,更是艺术与文字的完美融合,它为创意产业带来了革命性的变革。本文将探讨GPT…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
