【计算机网络】TCP原理 | 可靠性机制分析(三)
个人主页:兜里有颗棉花糖
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创
收录于专栏【网络编程】【Java系列】
本专栏旨在分享学习网络编程、计算机网络的一点学习心得,欢迎大家在评论区交流讨论💌
目录
- ✈️一、滑动窗口原理
- 滑动窗口如何解决丢包问题
- ✈️二、滑动窗口——流量控制
- ✈️三、滑动窗口——拥塞控制
- ✈️四、总结
✈️一、滑动窗口原理
滑动窗口可以保证在TCP可靠性传输的前提下,数据传输的效率不会太低。我们知道UDP协议是不支持可靠性传输的,所以UDP传输数据的效率是要高于TCP的;而TCP的滑动窗口机制则可以缩小UDP和TCP传输效率之间的差距。
我们先来看看如果TCP如果不使用滑动窗口机制的时候是怎样进行数据传输的,如下图:
上面的传输虽然能够数据传输的可靠性,但其实主机A的大部分时间都消耗在等待ACK确认应答上了,所以数据传输的效率并不高。而滑动窗口机制就可以缩短主机A等待ACK的等待时间,如下图(使用滑动窗口机制):
如上图:滑动窗口机制允许发送方在发送数据时能够同时发送多个数据包,而无需等待确认,同时我们把一次能够发送数据的多少称之为窗口。
当然了,窗口越大,数据传输的效率就越高,但是窗口大小是不能无限大的,否则接收方或者中间过程的网络设备是无法在一定时间内处理如此庞大的数据的。
滑动窗口如何解决丢包问题
滑动窗口机制在TCP协议中起到了提高数据传输效率的作用,那如果数据传输过程中丢包了又该怎么办呢?这里的丢包问题分为两种情况:一定情况是要传输的数据丢失了;另外一种情况就是ACK丢失。接下来我们来分析滑动窗口下的超时重传过程。
- 情况一:ACK丢失
我们先来分析较为简单的一种情况,即滑动窗口机制下,如果发送了ACK丢失,此时我们不需要对该情况作出任何处理。
请看上图:上图中ACK1001(注意1001是一个确认序号哈,不要和ACK进行混淆,这里只是为了表述所以才写到一起)丢失了,但是ACK2001并没有丢失,确认序号2001的意思就是2000之前的所有数据(包括2000)都已经接收到了,所以即使ACK1001丢失,主机A在接收到ACK2001之后也是可以确定1000之前的数据包括1000(准确来收是2000之前的数据)都已经接收到了。
ACK3001和ACK4001也是一个道理。
如果所有的ACK全部丢失的话,这就相当于重大的网络故障了,另当别论即可;否则如果只是丢失一部分的ACK的话,对于TCP可靠传输是没有任何影响的。
- 情况二:数据包丢失
现在我们来看第二种情况,即数据包丢失:数据包如果丢失的话是一定要进行数据重传的。接下来我们对数据包什么时候重传以及怎样对数据包进行重传来进行分析。
上图中数据1001-2000
并没有传输到主机B(即数据发生了丢失);接下来主机A发送了数据2001-3000
,传输成功之后我们发现主机B返回的确认序号却是1001;接下来数据3001-7000
传输成功之后返回的ACK确认序号依旧是1001,意思就是主机B在向主机A索要1001-2000的数据
。换言之主机B只要没有接收到1001-2000的数据的话,那么主机B就会一直向主机A索要1001-2000之间的数据,具体做法是主机B一直返回确认序号是1001的ACK
;与此同时当主机A连续收到了多个确认序号是1001的ACK之后,就会向主机B发送1001-2000的数据。
当重传的1001-2000的数据到达主机B之后,主机B返回的确认序号就是7001。
我们站在缓冲区的角度来进行分析:接收方主机B有一个缓冲区用来接收主机A发送的数据,如下图所示:
这里使用最小的成本来完成丢失数据的重新传输(并没有重传其它的数据),我们可以把它叫做快速重传哈,其实这个快速重传本质上依旧是超时重传,只不过是将把超时重传结合滑动窗口进行了一个变形的操作。
这里要说明以下,有时TCP协议并不会涉及到滑动窗口的机制,即并不会使用快速重传:当网络通信涉及到大规模数据传输的时候,会使用滑动窗口快速重传的机制;当网络通信涉及到的数据很少的时候,此时就是使用超时重传机制。TCP会根据具体的场景来决策到底是使用超时重传还是快速重传
。
✈️二、滑动窗口——流量控制
我们已经知道滑动窗口中的窗口大小并不是越大越好,因为如果窗口如果太大,即传输大量的数据,此时接收方可能无法对这些数据进行处理,同时也可能导致数据传输的中间链路也无法对这些数据进行处理,进而导致丢包问题,此时我们就需要对这些丢失的数据进行重传。窗口太大的话并没有提高传输数据的效率反而会降低数据传输的效率。流量控制就是针对窗口太大导致接收方无法处理大量数据的一种策略。
发送方发送数据接收方对数据进行处理,这其实是一个生产者消费者模型,如下图:
现在来解释什么是流量控制:流量控制就是根据接收方处理数据的能力来先至发送方窗口的大小。
那如何来衡量接收方处理数据的能力呢:可以通过接收方的接收缓冲区的剩余空间大小来衡量接收方处理数据的能力。如果剩余空间越大则说明应用程序处理数据的速度就越快。所以干脆我们直接把接收缓冲区剩余空间大小通过ACK报文反馈给发送方来作为发送方下一次发送数据、窗口大小的依据
。
TCP报文结构中的16为窗口大小就是专门针对ACK报文而设定的,16位窗口大小就表示当前接收方缓冲区剩余容量的大小,把这个数字作为ACK报文之后反馈给发送方来作为发送方下一次发送数据大小的依据。TCP中的16位窗口大小字段的取值范围是0-65535,其中0表示接收方暂时不能接收数据,1-65535表示接收方可以接收的数据大小,每个单位代表一个字节。在TCP的标准实现中,默认窗口大小为64KB
(即65535个字节)。但是这并不意味着16位窗口大小最大就是64kb。因为TCP报文选项中有一个选项窗口大小拓展因子。实际的16位窗口大小是16位窗口大小<<拓展因子
,此时能够表示的窗口大小就非常大了。
下图是流量控制具体的工作过程,请看:
此时主机A虽然不会发送数据,但是由于主机A不知道主机B的接收缓冲区什么时候可以腾出空闲空间,所以主机A会周期性的向主机B发送窗口探测来触发ACK以获得主机B接收缓冲区的具体情况。
一旦发现主机B的接收缓冲区中有空闲内存后,主机A就会继续向主机B发送新的数据。
综上,流量控制简单来说就是接收方可以根据发送方窗口大小来反向限制发送方传输数据的速度。
✈️三、滑动窗口——拥塞控制
主机A向主机B发送数据的过程中,中间会经过一系列的交换机和路由器,所以数据传输的效率不仅仅取决于主机A、主机B,还取决于中间链路传输数据的速度。如果中间链路的某个环节传输数据的速度很慢,此时发送方即主机A的发送数据的速度不应该超过给环节传输数据的阈值。
那我们应该如何衡量链路中间某个环节转发数据的能力呢?
我们对中间链路环节的转发能力并没有很好的方式去进行量化,所以只能通过实践的方式来衡量中间链路环节的转发能力:
使用一个较小的窗口进行传输,如果传输通畅的话就将窗口调大
。
使用一个较大的窗口进行传输,如果传输异常的话就将窗口调小
。
简单来说就是通畅调大,异常调小。
下面我们来看TCP中拥塞控制是如何进行展开的:
第一步:
慢启动
刚开始进行通信的时候先使用一个很小的窗口试试水。为什么一上来不使用很大的窗口呢,因为如果遇到网络拥堵的话,刚刚进行网络通信时使用较大的窗口(意味着数据量的庞大)就会给网络带宽带来极大的负担。
第二步:指数增长
这里补充一个概念,即拥塞窗口:在拥塞窗口机制下使用的窗口大小。TCP发送方根据拥塞窗口的大小,确定可以发送的数据量。
指数增长就是在网络通畅的过程中,拥塞窗口的大小呈指数级别(*2)的增长(由于指数增长速度极快,所以对这里做出了一定的限制,请看第三步)。
第三步:线性增长
指数增长下当拥塞窗口大小达到一个阈值后就会从指数增长转换为线性增长(+n)。注意这里的指数增长和线性增长是根据数据传输的轮次来进行的。比如说,现在给定窗口大小是1000,那么传输了1000数据之后,本轮数据的传输就结束了,当接收方接收到ACK之后,继续发送数据就进入到了下一轮数据的传输,此时窗口大小就发生了变化,究竟是*2
还是+n
要根据具体情况具体分析。当线性增长增长到一定程度之后,发送方发送数据的速度就会非常快,当快的网络的极限的时候就可能出现丢包
。
第四步:拥塞窗口回归小窗口
当窗口大小在增长过程中如果出现丢包则认为网络出现拥堵了,此时就会把窗口大小调整到小窗口(即最开始的慢窗口),继续回到指数增长和线性增长的过程。当然此时也会根据出现丢包的拥塞窗口的大小来调整阈值(这个阈值指的是指数增长到线程增长的阈值)。
下面是拥塞过程的详细展开图:
综上,拥塞控制即拥塞窗口的大小不断发送变化调整从而适应复杂多变的网络环境。当然这样做的一个弊端就是会带来数据传输上性能的损失,比如每次丢包后会重新回到慢开始使得数据传输会大打折扣。所以拥塞控制就出现了很多优化的版本(尽可能地把小窗口的传输时间缩短)。还有一点就是我们关注的是拥塞控制的这样一个策略而不是这里的参数,因为参数都是可以进行调整的。
✈️四、总结
发送方实际窗口=min(流量控制窗口,拥塞窗口):这是因为在网络中,发送方的发送速率应该受到接收方的接收速率限制(由流量控制窗口确定),同时也应该受到网络的拥塞程度限制(由拥塞窗口确定)。换句话来说我们不仅仅要考虑到接收方的处理能力,同时也要考虑到中间链路的处理能力
。
滑动窗口在保证数据传输可靠性的前提下一定程度上提高了数据传输的效率,同时拥塞控制和流量控制共同限制了滑动窗口机制,我们也可以说拥塞控制和流量控制也是保证TCP可靠性的一种机制。
本文到这里就结束了,希望友友们可以支持一下一键三连哈。嗯,就到这里吧,再见啦!!!
相关文章:

【计算机网络】TCP原理 | 可靠性机制分析(三)
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程、计算机网络的一点学习心得,欢迎大家在评论区交流讨论💌 目…...

【昕宝爸爸小模块】线程的几种状态,状态之间怎样流转
➡️博客首页 https://blog.csdn.net/Java_Yangxiaoyuan 欢迎优秀的你👍点赞、🗂️收藏、加❤️关注哦。 本文章CSDN首发,欢迎转载,要注明出处哦! 先感谢优秀的你能认真的看完本文&…...

ChatGPT网站小蜜蜂AI更新了
ChatGPT网站小蜜蜂AI更新了 前阶段郭震兄弟刚开发小蜜蜂AI网站的的时候,写了一篇关于ChatGPT的网站小蜜蜂AI的博文[https://blog.csdn.net/weixin_41905135/article/details/135297581?spm1001.2014.3001.5501]。今天听说小蜜蜂网站又增加了新的功能——在线生成思…...

瑞_Java开发手册_(二)异常日志
文章目录 异常日志的意义(一) 错误码(二) 异常处理(三) 日志规约附:错误码列表 🙊前言:本文章为瑞_系列专栏之《Java开发手册》的异常日志篇,本篇章主要介绍异常日志的错误码、异常处理、日志规约。由于博主是从阿里的《Java开发手…...

Elasticsearch:Search tutorial - 使用 Python 进行搜索 (四)
在本节中,你将了解另一种机器学习搜索方法,该方法利用 Elastic Learned Sparse EncodeR 模型或 ELSER,这是一种由 Elastic 训练来执行语义搜索的自然语言处理模型。这是继之前的文章 “Elasticsearch:Search tutorial - 使用 Pyth…...

Python之Matplotlib绘图调节清晰度
Python之Matplotlib绘图调节清晰度 文章目录 Python之Matplotlib绘图调节清晰度引言解决方案dpi是什么?效果展示总结 引言 使用python中的matplotlib.pyplot绘图的时候,如果将图片显示出来,或者另存为图片,常常会出现清晰度不够的…...

pygame.error: video system not initialized
错误处理方式: pygame.init() 增加此行...

java面试题2024
前言 准备换工作了,给自己定个目标,每天至少整理出一道面试题。题型会比较随机,感觉这样更容易随机到面试官要问的东西。整理时我会把我认为正确的回答写出来,比较复杂的也尽量把原理贴出来,争取做到无论为了应付面试&…...

配置git服务器
第一步: jdk环境配置 (1)搜索【高级系统设置】,选择【高级】选项卡,点【环境变量】 (2)在【系统变量】里面,点击【新建】 (3)添加JAVA_HOME环境变量JAVA_HO…...

vue3环境下,三方组件中使用echarts,无法显示问题
问题描述: vue3中,使用了三方组件primevue的侧边栏Sidebar,在其中注册echarts dom节点,无法显示,提示dom不存在 问题分析: 使用原生div,通过document.getElementById(),将echarts…...

FAST OS DOCKER 可视化Docker管理工具
介绍 FAST OS DOCKER 界面直观、简洁,非常适合新手使用,方便大家轻松上手 docker部署运行各类有趣的容器应用,同时 FAST OS DOCKER 为防止服务器负载过高,进行了底层性能优化;其以服务器安全为基础,对其进…...

MOJO基础语法
文章目录 打印变量及方法声明结构体python集成 打印 print("Hello Mojo!")变量及方法声明 变量: 使用’ var ‘创建一个可变的值,或者用’ let 创建一个不可变的值。 方法: 方法可以使用python中的def 方法声明,也引…...

java基础之IO流之字符流
字符流 传输char和String类型的数据 输入流 抽象父类:Reader 节点流:FileReader 常用方法 int read():读取一个字符,读取到达末尾,返回-1 package com.by.test2; import java.io.FileNotFoundException; import…...

chromium通信系统-ipcz系统(十一)-mojo binding
关于mojo binding的官方文档为mojo docs。 由于比较复杂,这里只做简单源码分析。 我们知道要实现rpc,必须实现客户端和服务端。 mojo 实现了一套领域语言,通过领域语言描述接口和数据, 再通过特有编译器编译成c代码。 这个过程会…...

鸿蒙开发基础-Web组件之cookie操作
使用ArkTS语言实现一个简单的免登录过程,向大家介绍基本的cookie管理操作。主要包含以下功能: 获取指定url对应的cookie的值。设置cookie。清除所有cookie。免登录访问账户中心。 cookie读写操作 首次打开应用时,应用首页的Web组件内呈现的…...

什么是k8s和声明式编程?
认识k8s之后,他的操作模式对我来说是一种很不错的体验。他提供了更接近现实世界的面向对象接口。 什么是k8s? Kubernetes(K8s)是一种开源容器编排平台,用于自动化部署、扩展和管理容器化应用程序。它简化了容器化应用…...

Fluids —— MicroSolvers DOP
目录 Gas SubStep —— 重复执行对应的子步 Switch Solver —— 切换解算器 Gas Attribute Swap —— 交换、复制或移动几何体属性 Gas Intermittent Solve —— 固定时间间隔计算子解算器 Gas External Forces —— 计算外部力并更新速度或速度场 Gas Particle Separate…...

工业智能网关:HiWoo Box远程采集设备数据
工业智能网关:HiWoo Box远程采集设备数据 在工业4.0和智能制造的浪潮下,工业互联网已成为推动产业升级、提升生产效率的关键。而在这其中,工业智能网关扮演着至关重要的角色。今天,我们就来深入探讨一下工业智能网关。 一、什么…...

Apollo之原理和使用讲解
文章目录 1 Apollo1.1 简介1.1.1 背景1.1.2 简介1.1.3 特点 1.2 基础模型1.3 Apollo 四个维度1.3.1 application1.3.2 environment1.3.3 cluster1.3.4 namespace 1.4 本地缓存1.5 客户端设计1.5.1 客服端拉取原理1.5.2 配置更新推送实现 1.6 总体设计1.7 可用性考虑 2 操作使用…...

魅族MX4pro系统升级、降级
网上的教程都是按住开机键音量上或者下键,但是我按了没用,还是直接点击压缩包管用。 下载系统 官网地址(所有手机固件):https://flyme.cn/firmware.html 官方魅族mx4Pro系统:https://flyme.cn/firmwarelis…...

【Docker】快速入门之Docker的安装及使用
一、引言 1、什么是Docker Docker是一个开源的应用容器引擎,它让开发者可以将他们的应用及其依赖打包到一个可移植的镜像中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之…...

记录汇川:H5U于Factory IO测试13
主程序: 子程序: IO映射 子程序: 辅助出料 子程序: 模式选择 子程序: 示教程序 子程序: 手动程序 子程序: 统计程序 子程序: 异常报警 子程序: 自动程序: F…...

PYTHON通过跳板机巡检CENTOS的简单实现
实现的细节和引用的文件和以前博客记录的基本一致 https://shaka.blog.csdn.net/article/details/106927633 差别在于,这次是通过跳板机登陆获取的主机信息,只记录差异的部份 1.需要在跳板机相应的路径放置PYTHON的脚本resc.py resc.py这个脚本中有引用的文件(pm.sh,diskpn…...

网络配置以及命令详解
传统linux中,网络接口为eth0,eth1,eth2,..... RHEL 7以上版本默认命名是基于分配上的固定名称,ens33 接口类型: en:以太网有线接口 wl:无线局域网接口 ww:无线广域网 dmesg:显示开机信息 适配器类型: s:热插拔插槽 o:板载 p:pci类型 ifconfig ens160(命令行配置,临时生效):查…...

商务外语MR混合现实仿真情景实训教学
MR混合现实技术是一种将虚拟世界与真实世界相结合的技术。通过MR设备,我们可以将虚拟的场景、人物、物品等元素实时地呈现在真实的环境中,实现真实与虚拟的完美融合。在商务外语的实训教学中,MR技术可以为我们提供丰富的场景资源,…...

牛客周赛 Round 28 解题报告 | 珂学家 | 组合数学 + 离散化树状数组
前言 整体评价 还是E稍微有点意思,新周赛好像比预期要简单一些, _. 欢迎关注 珂朵莉 牛客周赛专栏 珂朵莉 牛客小白月赛专栏 A. 小红的新周赛 思路: 模拟 #include <bits/stdc.h>using namespace std;int main() {int res 0;for (int i 0; i < 6; i…...

Python系列(3)—— 变量
变量 一、变量命名规范二、变量赋值三、变量的数据类型四、变量的作用域五、变量类型转换 Python编程中,变量是存储数据的容器。它们用于存储各种数据类型,如整数、浮点数、字符串、列表、字典等。理解变量及其工作原理是Python编程的基础。 一、变量命…...

Java 并发性和多线程2
四、如何创建并运行 java 线程 Java 线程类也是一个 object 类,它的实例都继承自 java.lang.Thread 或其子类。 可以用如下方式用 java 中创建一个线程: Tread thread new Thread(); 执行该线程可以调用该线程的 start()方法: thread.start(); 在上…...

最新消息:OpenAI GPT Store 正式上线,GPTs 应用商店来了!
原文链接 https://openaigptguide.com/gpt-store-and-chatgpt-team/ OpenAI推出的两款新产品和服务:GPT Store和ChatGPT Team,提供了许多全新的解决方案和功能,旨在帮助用户更轻松地使用和构建GPT工具,同时也增加了公司的收入来源…...

memory泄露分析方法(java篇)
#memory泄露主要分为java和native 2种,本文主要介绍java# 测试每天从monkey中筛选出内存超标的app,提单流转到我 首先,辨别内存泄露类型(java,还是native) 从采到的dumpsys_meminfo_pid看java heap&…...