当前位置: 首页 > news >正文

经典分类模型回顾2—GoogleNet实现图像分类(matlab版)

GoogleNet是深度学习领域的一种经典的卷积神经网络,其在ImageNet图像分类任务上的表现十分优秀。下面是使用Matlab实现GoogleNet的图像分类示例。

1. 数据准备

在开始之前,需要准备一些图像数据用来训练和测试模型,可以从ImageNet等数据集中下载。

2. 网络构建

使用Matlab的Neural Network Toolbox可以快速构建卷积神经网络。在本示例中,我们可以使用已经预训练好的GoogleNet模型,也可以从头开始构建一个新的模型。

使用预训练好的GoogleNet模型:

```matlab
net = googlenet;
```

从头开始构建一个新的模型:

```matlab
layers = [
    imageInputLayer([224 224 3])
    convolution2dLayer(3,64,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,128,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,256,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,256,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,512,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,512,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,1024,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,1024,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.5)
    fullyConnectedLayer(1000)
    softmaxLayer
    classificationLayer];

net = trainNetwork(imds,layers,opts);
```

3. 训练模型

使用Matlab的trainNetwork函数可以训练模型,可以使用已经下载好的图像数据。

```matlab
opts = trainingOptions('sgdm', ...
    'MiniBatchSize', 64, ...
    'MaxEpochs', 20, ...
    'InitialLearnRate', 0.001);
    
[net,info] = trainNetwork(imds,net,opts);
```

4. 测试模型

使用Matlab的classify函数可以对新的图像进行分类。

```matlab
im = imread('test.jpg');
im = imresize(im,[224 224]);
[label,score] = classify(net,im);
```

5. 可视化结果

使用Matlab的imshow函数可以将图像显示出来,使用Matlab的bar函数可以将分类结果以条形图的形式显示。

```matlab
subplot(1,2,1);
imshow(im);
title(string(label) + ", " + num2str(max(score)*100,3) + "%");

subplot(1,2,2);
bar(score);
title("Classification results");
xticklabels(categories(imds));
xtickangle(45);
ylabel("Score");
```

相关文章:

经典分类模型回顾2—GoogleNet实现图像分类(matlab版)

GoogleNet是深度学习领域的一种经典的卷积神经网络,其在ImageNet图像分类任务上的表现十分优秀。下面是使用Matlab实现GoogleNet的图像分类示例。 1. 数据准备 在开始之前,需要准备一些图像数据用来训练和测试模型,可以从ImageNet等数据集中…...

Java经典面试题——谈谈 final、finally、finalize 有什么不同?

典型回答 final 可以用来修饰类、方法、变量,分别有不同的意义,final 修饰的 class 代表不可以继承扩展, final 的变量是不可以修改的,而 final 的方法也是不可以重写的(override)。 finally 则是 Java 保…...

C#的Version类型值与SQL Server中二进制binary类型转换

使用C#语言编写的应用程序可以通过.NET Framework框架提供的Version类来控制每次发布的版本号,以便更好控制每次版本更新迭代。 版本号由两到四个组件组成:主要、次要、内部版本和修订。 版本号的格式如下所示, 可选组件显示在方括号 ([ 和…...

软测入门(五)接口测试Postman

Postman 一款Http接口收工测试工具。如果做自动化测试会使用jemter做。 安装 去官网下载即可。 https://www.postman.com/downloads/?utm_sourcepostman-home 功能介绍 页面上的单词基本上都能了解,不多介绍。 转代码&注释 可将接口的访问转为其他语言的…...

UWB通道选择、信号阻挡和反射对UWB定位范围和定位精度的影响

(一)介绍检查NLOS操作时需要考虑三个方面:(1)由于整体信号衰减,通信范围减小。(2)由于直接路径信号的衰减,导致直接路径检测范围的减小。(3)由于阻…...

linux基本功之列之wget命令实战

文章目录前言一. wget命令介绍二. 语法格式及常用选项三. 参考案例3.1 下载单个文件3.2 使用wget -o 下载文件并改名3.3 -c 参数,下载断开链接时,可以恢复下载3.4 wget后台下载3.5 使用wget下载整个网站四. 补充与汇总常见用法总结前言 大家好&#xff…...

学习ROS时针对gazebo相关的问题(重装与卸载是永远的神)

ResourceNotFound:gazebo_ros 错误解决 参考:https://blog.csdn.net/weixin_42591529/article/details/123869969 当将机器人加载到gazebo时,运行launch文件出现如下错误 这是由于缺少gazebo包所导致的。 解决办法:...

几个C语言容易忽略的问题

1 取模符号自增问题 我们不妨尝试写这样的程序 #include<stdio.h> int main(){int n,t5;printf("%d\n",7%(-3));//1printf("%d\n",(-7)%3);//-1while(--t)printf("%d\n",t);t5;while(t--)printf("%d\n",t);return 0; } 运行…...

CentOS 7.9安装Zabbix 4.4《保姆级教程》

CentOS 7.9安装Zabbix 4.4一、配置一览二、环境准备设置Selinux和firewalld设置软件源1.配置ustc CentOS-Base源2.安装zabbix 4.4官方源3.安装并更换epel源4.清除并生成缓存三、安装并配置Zabbix Server安装zabbix组件安装php安装mariadb并创建数据库修改zabbix_server.conf设置…...

路由器与交换机的区别(基础知识)

文章目录交换机路由器路由器和交换机的区别&#xff08;1&#xff09;工作层次不同&#xff08;2&#xff09;数据转发所依据的对象不同&#xff08;3&#xff09;传统的交换机只能分割冲突域&#xff0c;不能分割广播域&#xff1b;而路由器可以分割广播域&#xff08;4&#…...

Python基础学习9——函数

基本概念 函数是一种能够完成某项任务的封装工具。在数学中&#xff0c;函数是自变量到因变量的一种映射&#xff0c;通过某种方式能够使自变量的值变成因变量的值。其实本质上也是实现了某种值的转换的任务。 函数的定义 在python中&#xff0c;函数是利用def来进行定义&am…...

项目中的MD5、盐值加密

首先介绍一下MD5&#xff0c;而项目中用的是MD5和盐值来确保密码的安全性&#xff1b; 1. md5简介 md5的全称是md5信息摘要算法&#xff08;英文&#xff1a;MD5 Message-Digest Algorithm &#xff09;&#xff0c;一种被广泛使用的密码散列函数&#xff0c;可以产生一个128位…...

电商项目后端框架SpringBoot、MybatisPlus

后端框架基础 1.代码自动生成工具 mybatis-plus &#xff08;1&#xff09;首先需要添加依赖文件 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.2</version></dependency><de…...

2023年03月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年03月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

华为校招机试 - 数组取最小值(Java JS Python)

目录 题目描述 输入描述 输出描述 用例 题目解析 JavaScript算法源码 Java算法源码...

20 客户端服务订阅的事件机制剖析

Nacos客户端服务订阅的事件机制剖析 我们已经分析了Nacos客户端订阅的核心流程&#xff1a;Nacos客户端通过一个定时任务&#xff0c;每6秒从注册中心获取实例列表&#xff0c;当发现实例发生变化时&#xff0c;发布变更事件&#xff0c;订阅者进行业务处理&#xff0c;然后更…...

ThreadPoolExecutor中的addWorker方法

在看线程池源码的时候看到了这么一段代码 private boolean addWorker(Runnable firstTask, boolean core) {retry:for (int c ctl.get();;) {// Check if queue empty only if necessary.if (xxx)return false;for (;;) {if (xxx)return false;if (xxx)break retry;if (xxx)c…...

9 有线网络的封装

概述 IPC设备一般都带有网口,支持以有线网络方式接入NVR和其他平台。有线网络的使用比较简单,主要操作有:设置IP地址、子网掩码、网关、DHCP等。在封装有线网络前,我们需要先封装DHCP客户端管理类,用于管理各种网络的DHCP功能。 DHCP客户端管理类 DHCP客户端管理类的头文件…...

Linux----网络基础(2)--应用层的序列化与反序列化--守护进程--0226

文章中有使用封装好的头文件&#xff0c;可以在下面连接处查询。 Linux相关博文中使用的头文件_Gosolo&#xff01;的博客-CSDN博客 1. 应用层 我们程序员写的一个个解决我们实际问题, 满足我们日常需求的网络程序, 都是在应用层 1.2 协议 我们在之前的套接字编程中使用的是…...

uipath实现滑动验证码登录

现实需求 在进行RPA流程设计过程中&#xff0c;遇到登录系统需要滑动验证的情况&#xff0c;如图所示&#xff1a; 此时需要在RPA流程设计中&#xff0c;借助现有的活动完成模拟人工操作&#xff0c;完成验证登录操作。 设计思路 这个功能流程的设计思路大体如下&#xff1a; …...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...