当前位置: 首页 > news >正文

解决ssh: connect to host github.com port 22: Connection timed out

当连接 GitHub 时无法连接到 22 端口时,可以尝试将端口更换为 443

  1. 首先,尝试使用以下命令从 GitHub 克隆仓库:
$ git clone git@github.com:xxxxx/xxxx.git my-awesome-proj

如果出现以下错误信息:

Cloning into 'my-awesome-proj'...
ssh: connect to host github.com port 22: Connection timed out
fatal: Could not read from remote repository.

这说明不能通过 22 端口连接到 GitHub。
2. 接下来,尝试使用以下命令测试 SSH 连接:

$ ssh -T git@github.com

如果再次出现连接超时的错误信息:

ssh: connect to host github.com port 22: Connection timed out

这意味着无法通过 22 端口进行 SSH 连接。
3. 尝试使用以下命令,将 SSH 连接的端口更改为 443:

$ ssh -T -p 443 git@ssh.github.com

如果显示以下信息:

Hi xxxx! You've successfully authenticated, but GitHub does not provide shell access.

这意味着通过 443 端口成功进行了身份验证,但 GitHub 不提供 shell 访问权限。
4. 现在,我们需要在 ~/.ssh/config 文件中覆盖 SSH 设置。使用以下命令编辑该文件:

$ vim ~/.ssh/config

在文件中添加以下内容:

# Add section below to it
Host github.comHostname ssh.github.comPort 443

保存并关闭文件。
5. 最后,再次尝试使用以下命令进行 SSH 连接:

$ ssh -T git@github.com

如果显示以下信息:

Hi xxxxx! You've successfully authenticated, but GitHub does not provide shell access.

这意味着成功通过 443 端口进行了身份验证,并且现在可以正常连接到 GitHub。
6. 现在,您可以尝试再次克隆仓库:

$ git clone git@github.com:xxxxxx/xxxxx.git my-awesome-proj

如果显示以下信息:

Cloning into 'my-awesome-proj'...
remote: Enumerating objects: 15, done.
remote: Counting objects: 100% (15/15), done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 15 (delta 0), reused 15 (delta 0), pack-reused 0
Receiving objects: 100% (15/15), 22.90 KiB | 4.58 MiB/s, done.

这意味着成功克隆了 GitHub 上的仓库。

相关文章:

解决ssh: connect to host github.com port 22: Connection timed out

当连接 GitHub 时无法连接到 22 端口时,可以尝试将端口更换为 443 首先,尝试使用以下命令从 GitHub 克隆仓库: $ git clone gitgithub.com:xxxxx/xxxx.git my-awesome-proj如果出现以下错误信息: Cloning into my-awesome-proj…...

idea 创建 spring boot

1.创建步骤 2. 编码添加 2.1 这是自动生成的启动函数 package com.example.comxjctest4;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication;SpringBootApplication public class Application {publi…...

【智能家居入门之微信小程序控制下位机】(STM32、ONENET云平台、微信小程序、HTTP协议)

实现微信小程序控制单片机外设动作 一、使用ONENET可视化组件控制单片机外设动作二、使用微信小程序控制单片机外设动作三、总结 本篇博客话接上文: https://blog.csdn.net/m0_71523511/article/details/135892908 上一篇博客实现了微信小程序接收单片机上传的数据…...

07.领域驱动设计:了解3种常见微服务架构模型的对比和分析

目录 1、概述 2、整洁架构 3、六边形架构 4、三种微服务架构模型的对比和分析 5、从三种架构模型看中台和微服务设计 5.1 中台建设要聚焦领域模型 5.2 微服务要有合理的架构分层 5.2.1 项目级微服务 5.2.2 企业级中台微服务 5.3 应用和资源的解耦与适配 6、总结 1、概…...

设计模式——模板方法模式(Template Method Pattern)

概述 模板方法模式:定义一个操作中算法的框架,而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术,它是一种类行为型模式。模板方法模式是结…...

07. STP的基本配置

文章目录 一. 初识STP1.1. STP概述1.2. STP的出现1.3. STP的作用1.4. STP的专业术语1.5. BPDU的报文格式1.6. STP的选择原则(1)选择根桥网桥原则(2)选择根端口原则 1.7. 端口状态1.8. STP报文类型1.9. STP的收敛时间 二. 实验专题…...

oracle分区范围修改与数据迁移处理

背景 由于对应用上线后流量越来越大,原来的按年自动分区性能跟不上,因此决定改成按月自动分区,同时将原有分区数据重新迁移到新的分区 步骤 修改表分区为一个月一个分区 alter table my_table set INTERVAL (NUMTOYMINTERVAL(1, month));…...

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSSVM【24年…...

SeaTunnel Web安装 一把成

安装相关jar包,以及SeaTunnel 和Web 打成的包,可以直接使用,但是需要安装MySQL客户端的分享: 链接:https://pan.baidu.com/s/1qrt1RAX38SgIpNklbQJ7pA 提取码:0kmf 1. 环境准备 环境名称版本系统环境C…...

对话泛能网程路:能源产业互联网,行至中程

泛能网的能源产业互联网的标杆价值还不仅于此。其在产业互联之外,也更大的特殊性在于其也更在成为整个碳市场的“辅助运营商”,包括电力、碳等一系列被泛能网帮助企业改造和沉淀的要素资产,都在构成着碳交易市场的未来底层。 这恰是产业互联…...

Doris简介及单机部署(超详细)

文章目录 一、Doris简介1、Doris介绍2、Doris架构 二、Doris单机部署(Centos7.9)1、下载Doris2、准备环境3、安装部署3.1 创建存储目录3.2 配置 FE3.3 启动 FE3.4 查看 FE 运行状态3.5 配置 BE3.6 启动 BE3.7 添加 BE 节点到集群3.8 查看 BE 运行状态3.9…...

Pytest 识别case规则

一、Python测试框架,主要特点有以下几点: 简单灵活,容易上手;支持参数化;能够支持简单的单元测试和复杂的功能测试,还可以用来做selenium/appnium等自动化测试、接口自动化测试(pytestrequests…...

gorm+mysql查询/修改json列相关操作汇总

目录 具体操作 1,查询JSON段落指定key的值是否有等于value的 或 指定keyvalue的数据记录 2,查询JSON段落中price>19的记录 3,查询JSON段中key为k0的记录 4、JSON段落中提取指定键值对到指定结构 5,查询JSON数组是否包含…...

CMake-Cookbook 第0章 配置环境

文章目录 第0章 配置环境0.1 获取代码0.2 Docker镜像0.3 安装必要的软件0.3.1 获取CMake0.3.2 编译器0.3.3 自动化构建工具0.3.4 Python0.3.5 依赖软件0.3.5.1 BLAS和LAPACk0.3.5.2 消息传递接口(MPI)0.3.5.3 线性代数模板库0.3.5.4 Boost库0.3.5.5 交叉编译器0.3.5.6 ZeroMQ, …...

优质硬盘检测工具SMART Utility,保障您的Mac数据安全

在日常使用Mac电脑的过程中,我们经常会存储大量的重要数据,如照片、文档、视频等。然而,硬盘故障却是一件令人头疼的事情,可能会导致数据丢失、系统崩溃等严重后果。为了保障您的数据安全,我们推荐一款专业的硬盘检测工…...

Spring: alibaba代码规范校验工具checkstyle

文章目录 一、idea配置checkstyle插件二、激活CheckStyle三、配置自动格式化功能四、使用代码格式化 一、idea配置checkstyle插件 下载 Intellij IDEA Checkstyle 插件:File -> setting -> plugin通过关键字CheckStyle-IDEA搜索并安装。 安裝完成后重启idea…...

c++线程thread示例

本文章记录c创建线程&#xff0c;启动线程和结束线程的代码。 需要注意&#xff0c;编译时需要添加-lpthread依赖。 代码&#xff1a; ThreadTest.h #ifndef TEST_THREAD_TEST_H #define TEST_THREAD_TEST_H#include <thread> #include <mutex>class ThreadTes…...

Compose | UI组件(十一) | Spacer - 留白

文章目录 前言Spacer组件的参数说明Spacer组件的使用 总结 前言 Spacer组件是让两组件之间留有空白间隔 Spacer组件的参数说明 Spacer只有一个修饰符&#xff0c;修饰留空白的大小和比例&#xff0c;颜色 Spacer(modifier: Modifier)Spacer组件的使用 Row {Box(modifier M…...

PyTorch的nn.Module类的详细介绍

在PyTorch中&#xff0c;nn.Module 类是构建神经网络模型的基础类&#xff0c;所有自定义的层、模块或整个神经网络架构都需要继承自这个类。nn.Module 类提供了一系列属性和方法用于管理网络的结构和训练过程中的计算。 1. PyTorch中nn.Module基类的定义 在PyTorch中&#xff…...

python使用activemq库ActiveMQClient类的连接activemq并订阅、发送和接收消息

引入activemq模块&#xff1a;from activemq import ActiveMQClient from activemq import ActiveMQClient 是一个Python的导入语句&#xff0c;它从activemq模块中导入了ActiveMQClient类。 解释一下各个部分&#xff1a; from activemq: 这表示我们正在从一个名为activemq…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...