深圳西乡网站建设公司/广州网站建设公司
恒大正式破产
准确来说,是中国恒大(恒大汽车、恒大物业已于 2024-01-30 复牌)。
恒大破产,注定成为历史的注目焦点。
作为首个宣布破产的房地产企业,恒大的破产规模也创历史新高。
房地产作为曾推动中国三分之一经济增长的行业,恒大是当中毫无疑问的佼佼者。
能够成就这样的巨无霸,自然是有时代和政策因素的。
在房地产行业的上升周期中,房企普遍的高杠杆率和过度扩张如今成为一种"回旋镖",对各个层面都产生了影响。
即使你和我一样,家里没有几套房,没有买恒大的LW楼,也没有持有恒大系股票,但我们都感受到了这波的消费低迷和各行业的裁员潮,这与房地产去泡沫化不无关系。
中国楼市基本对标美国股市,当一个国家的重要经济载体出现问题(失去信心),普通人不可能独善其身。
当然了,最幸福的人不会变。
仍然是那些无论房地产高歌猛进还是岌岌可危,都自诩与他无关的人(他觉得自己不考虑买房嘛,能有啥关系)。
我相信这批人,和看到《游戏意见稿》就只讨论「该不该给氪金游戏充值」是同一批人。
随他们去吧。
...
回归主线。
自上次写了米哈游的一面原题和变形题之后,又有读者来投稿了。
据说,这次是米哈游(原神)终面算法题。
看着确实像,因为这是一道适合「由浅入深」的题目,适合在面试过程中有来有回。
启动!
题目描述
平台:LeetCode
题号:215
给定整数数组 nums
和整数 k
,请返回数组中第 k
个最大的元素。
请注意,你需要找的是数组排序后的第 k
个最大的元素,而不是第 k
个不同的元素。
你必须设计并实现时间复杂度为 的算法解决此问题。
示例 1:
输入: [3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4
提示:
值域映射 + 树状数组 + 二分
除了直接对数组进行排序,取第 位的 做法以外。
对于值域大小 小于 数组长度本身时,我们还能使用「树状数组 + 二分」的 做法,其中 为值域大小。
首先值域大小为 ,为了方便,我们为每个 增加大小为 的偏移量,将值域映射到 的空间。
将每个增加偏移量后的 存入树状数组,考虑在 范围内进行二分,假设我们真实第 大的值为 ,那么在以 为分割点的数轴上,具有二段性质:
-
在 范围内的数 满足「树状数组中大于等于 的数不低于 个」 -
在 范围内的数 不满足「树状数组中大于等于 的数不低于 个」
二分出结果后再减去刚开始添加的偏移量即是答案。
Java 代码:
class Solution {
int M = 100010, N = 2 * M;
int[] tr = new int[N];
int lowbit(int x) {
return x & -x;
}
int query(int x) {
int ans = 0;
for (int i = x; i > 0; i -= lowbit(i)) ans += tr[i];
return ans;
}
void add(int x) {
for (int i = x; i < N; i += lowbit(i)) tr[i]++;
}
public int findKthLargest(int[] nums, int k) {
for (int x : nums) add(x + M);
int l = 0, r = N - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (query(N - 1) - query(mid - 1) >= k) l = mid;
else r = mid - 1;
}
return r - M;
}
}
C++ 代码:
class Solution {
public:
int N = 200010, M = 100010, tr[200010];
int lowbit(int x) {
return x & -x;
}
int query(int x) {
int ans = 0;
for (int i = x; i > 0; i -= lowbit(i)) ans += tr[i];
return ans;
}
void add(int x) {
for (int i = x; i < N; i += lowbit(i)) tr[i]++;
}
int findKthLargest(vector<int>& nums, int k) {
for (int x : nums) add(x + M);
int l = 0, r = N - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (query(N - 1) - query(mid - 1) >= k) l = mid;
else r = mid - 1;
}
return r - M;
}
};
Python 代码:
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
N, M = 200010, 100010
tr = [0] * N
def lowbit(x):
return x & -x
def query(x):
ans = 0
i = x
while i > 0:
ans += tr[i]
i -= lowbit(i)
return ans
def add(x):
i = x
while i < N:
tr[i] += 1
i += lowbit(i)
for x in nums:
add(x + M)
l, r = 0, N - 1
while l < r:
mid = l + r + 1 >> 1
if query(N - 1) - query(mid - 1) >= k: l = mid
else: r = mid - 1
return r - M
TypeScript 代码:
function findKthLargest(nums: number[], k: number): number {
const N = 200010, M = 100010;
const tr = new Array(N).fill(0);
const lowbit = function(x: number): number {
return x & -x;
};
const add = function(x: number): void {
for (let i = x; i < N; i += lowbit(i)) tr[i]++;
};
const query = function(x: number): number {
let ans = 0;
for (let i = x; i > 0; i -= lowbit(i)) ans += tr[i];
return ans;
};
for (const x of nums) add(x + M);
let l = 0, r = N - 1;
while (l < r) {
const mid = l + r + 1 >> 1;
if (query(N - 1) - query(mid - 1) >= k) l = mid;
else r = mid - 1;
}
return r - M;
};
-
时间复杂度:将所有数字放入树状数组复杂度为 ;二分出答案复杂度为 ,其中 为值域大小。整体复杂度为 -
空间复杂度:
优先队列(堆)
另外一个容易想到的想法是利用优先队列(堆),由于题目要我们求的是第 大的元素,因此我们建立一个小根堆。
根据当前队列元素个数或当前元素与栈顶元素的大小关系进行分情况讨论:
-
当优先队列元素不足 个,可将当前元素直接放入队列中; -
当优先队列元素达到 个,并且当前元素大于栈顶元素(栈顶元素必然不是答案),可将当前元素放入队列中。
Java 代码:
class Solution {
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> q = new PriorityQueue<>((a,b)->a-b);
for (int x : nums) {
if (q.size() < k || q.peek() < x) q.add(x);
if (q.size() > k) q.poll();
}
return q.peek();
}
}
C++ 代码:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
priority_queue<int, vector<int>, greater<int>> q;
for (int x : nums) {
if (q.size() < k || q.top() < x) q.push(x);
if (q.size() > k) q.pop();
}
return q.top();
}
};
Python 代码:
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
q = []
for x in nums:
if len(q) < k or q[0] < x:
heapq.heappush(q, x)
if len(q) > k:
heapq.heappop(q)
return q[0]
-
时间复杂度: -
空间复杂度:
快速选择
对于给定数组,求解第 大元素,且要求线性复杂度,正解为使用「快速选择」做法。
基本思路与「快速排序」一致,每次敲定一个基准值 x
,根据当前与 x
的大小关系,将范围在 的 划分为到两边。
同时利用,利用题目只要求输出第 大的值,而不需要对数组进行整体排序,我们只需要根据划分两边后,第 大数会落在哪一边,来决定对哪边进行递归处理即可。
❝快速排序模板为面试向重点内容,需要重要掌握。
❞
Java 代码:
class Solution {
int[] nums;
int qselect(int l, int r, int k) {
if (l == r) return nums[k];
int x = nums[l], i = l - 1, j = r + 1;
while (i < j) {
do i++; while (nums[i] < x);
do j--; while (nums[j] > x);
if (i < j) swap(i, j);
}
if (k <= j) return qselect(l, j, k);
else return qselect(j + 1, r, k);
}
void swap(int i, int j) {
int c = nums[i];
nums[i] = nums[j];
nums[j] = c;
}
public int findKthLargest(int[] _nums, int k) {
nums = _nums;
int n = nums.length;
return qselect(0, n - 1, n - k);
}
}
C++ 代码:
class Solution {
public:
vector<int> nums;
int qselect(int l, int r, int k) {
if (l == r) return nums[k];
int x = nums[l], i = l - 1, j = r + 1;
while (i < j) {
do i++; while (nums[i] < x);
do j--; while (nums[j] > x);
if (i < j) swap(nums[i], nums[j]);
}
if (k <= j) return qselect(l, j, k);
else return qselect(j + 1, r, k);
}
int findKthLargest(vector<int>& _nums, int k) {
nums = _nums;
int n = nums.size();
return qselect(0, n - 1, n - k);
}
};
Python 代码:
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
def qselect(l, r, k):
if l == r:
return nums[k]
x, i, j = nums[l], l - 1, r + 1
while i < j:
i += 1
while nums[i] < x:
i += 1
j -= 1
while nums[j] > x:
j -= 1
if i < j:
nums[i], nums[j] = nums[j], nums[i]
if k <= j:
return qselect(l, j, k)
else:
return qselect(j + 1, r, k)
n = len(nums)
return qselect(0, n - 1, n - k)
TypeScript 代码:
function findKthLargest(nums: number[], k: number): number {
const qselect = function(l: number, r: number, k: number): number {
if (l === r) return nums[k];
const x = nums[l];
let i = l - 1, j = r + 1;
while (i < j) {
i++;
while (nums[i] < x) i++;
j--;
while (nums[j] > x) j--;
if (i < j) [nums[i], nums[j]] = [nums[j], nums[i]];
}
if (k <= j) return qselect(l, j, k);
else return qselect(j + 1, r, k);
};
const n = nums.length;
return qselect(0, n - 1, n - k);
};
-
时间复杂度:期望 -
空间复杂度:忽略递归带来的额外空间开销,复杂度为
我是宫水三叶,每天都会分享算法题解,并和大家聊聊近期的所见所闻。
欢迎关注,明天见。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉
本文由 mdnice 多平台发布
相关文章:

米哈游(原神)终面算法原题
恒大正式破产 准确来说,是中国恒大(恒大汽车、恒大物业已于 2024-01-30 复牌)。 恒大破产,注定成为历史的注目焦点。 作为首个宣布破产的房地产企业,恒大的破产规模也创历史新高。 房地产作为曾推动中国三分之一经济增…...

机器学习如何改变缺陷检测的格局?
机器学习在缺陷检测中扮演着重要的角色,它能够通过自动学习和识别各种缺陷的模式和特征,改变缺陷检测的格局。以下是机器学习在缺陷检测中的一些应用和优势: 自动化检测:机器学习技术可以自动化处理大量的数据,通过学…...

【Java万花筒】图数据库 vs 多模型数据库:哪种数据库适合你的应用场景?
解密图数据库与多模型数据库:特性、查询语言和成功案例的全景展示 前言 图数据库和多模型数据库在当今数据处理领域扮演着重要的角色。本文将介绍四个主要的图数据库和多模型数据库:Neo4j、Apache TinkerPop、JGraphT和ArangoDB,探索它们的…...

【射影几何13 】梅氏定理和塞瓦定理探讨
梅氏定理和塞瓦定理 目录 一、说明二、梅涅劳斯(Menelaus)定理三、塞瓦(Giovanni Ceva)定理四、塞瓦点的推广 一、说明 在射影几何中,梅涅劳斯(Menelaus)定理和塞瓦定理是非常重要的基本定理。通过这两个定…...

Powershell Install 一键部署Openssl+certificate证书创建
前言 Openssl 是一个方便的实用程序,用于创建自签名证书。您可以在所有操作系统(如 Windows、MAC 和 Linux 版本)上使用 OpenSSL。 Windows openssl 下载 前提条件 开启wmi,配置网卡,参考 自签名证书 创建我们自己的根 CA 证书和 CA 私钥(我们自己充当 CA)创建服务器…...

SERVLET线程模型
1. SERVLET线程模型 Servlet规范定义了两种线程模型来阐明Web容器应该如何在多线程环境中处理servlet。第一种模型称为多线程模型,默认在此模型内执行所有servlet。在此模型中,每次客户机向servlet发送请求时Web容器都启动一个新线程。这意味着可能有多个线程同时访问servle…...

【开源】基于JAVA+Vue+SpringBoot的新能源电池回收系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…...

【蓝桥杯冲冲冲】Prime Gift
【蓝桥杯冲冲冲】Prime Gift 蓝桥杯备赛 | 洛谷做题打卡day31 文章目录 蓝桥杯备赛 | 洛谷做题打卡day31Prime Gift题面翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 提示题解代码我的一些话 Prime Gift 题面翻译 给你 n n n 个…...

【PyQt】06-.ui文件转.py文件
文章目录 前言方法一、基本脚本查看自己的uic安装目录 方法二、添加到扩展工具里面(失败了)方法二的成功步骤总结 前言 方法一、基本脚本 将Qt Designer(一种图形用户界面设计工具)生成的.ui文件转换为Python代码的脚本。 pytho…...

λ-矩阵知识点
原文:链接 λ-矩阵 若矩阵 A \mathbf{A} A 的元素为关于 λ λ λ 的多项式,则称 A \mathbf{A} A 为 λ λ λ-矩阵 (表示为 A ( λ ) \mathbf{A}(λ) A(λ)). λ λ λ-矩阵也存在秩、逆、初等变换、相抵的概念, 但是有一些不同. 定义. λ λ λ-矩阵的秩是…...

cocos creator 3.x 预制体无法显示
双击预制体,进入详情页,没有显示资源 Bomb 是个预制体,但是当我双击进来什么都没有了,无法对预制体进行可视化编辑 目前我只试出来一个解决方法: 把预制体拖进Canvas文件中,这样就能展示到屏幕上ÿ…...

Tomcat之虚拟主机
1.创建存放网页的目录 mkdir -p /web/{a,b} 2.添加jsp文件 vi /web/a/index.jsp <% page language"java" import"java.util.*" pageEncoding"UTF-8"%> <html> <head><title>JSP a page</title> </head> …...

前后端数据校验
前端校验内容 前端开发中的必要校验,可以保证用户输入的数据的准确性、合法性和安全性。同时,这些校验也有助于提供良好的用户体验和防止不必要的错误提交到后端。 1、必填字段校验: 对于必填的字段,需确保用户输入了有效的数据…...

Python把png图片转成jpg图片
在Python中,您可以使用PIL(Python Imaging Library,也被称为Pillow)库来将PNG图片转换为JPG格式。以下是一个简单的示例: 首先,确保你已经安装了Pillow库。如果没有安装,可以使用pip来安装&…...

STM32搭建开发环境
常用开发工具简介 集成开发环境 MDK:全名RealViewMDK,是Keil公司(已被ARM收购的)一款集成开发环境,界面美观,简单易用,是STM32最常用的集成开发环境EWARM:IAR公司的一款集成开发环…...

C#入门详解_01_课程简介、C#语言简介、开发环境和学习资料的准备
文章目录 1. 课程简介2. C#语言简介3.开发环境与学习资料 1. 课程简介 开设本课程的目的 传播C#开发的知识,让更多的人有机会接触到软件开发行业引导有兴趣或者想转行的朋友进入软件开发行业 课程内容 完整讲述C#语言在实际软件开发中的应用采用知识讲述加实例程序…...

C++服务器端开发(2):确定服务器框架
选择C服务器框架时,可以考虑: 并发性能:C的强项之一是其并发性能。选择一个具有高并发处理能力的服务器框架,可以更好地满足大量并发请求的需求。例如,libevent、Boost.Asio和CppServer都是具有良好并发性能的C服务器框…...

CGAL::2D Arrangements-5
5.Arrangement无界曲线 前几章中构建和操作的所有Arrangement都只由线段引起,线段尤其是有界曲线。这样的Arrangement总是具有一个包含所有其他Arrangement特征的unbounded face。在本节中,我们将解释如何构造无界曲线的Arrangement。为了简化说明&…...

登录+JS逆向进阶【过咪咕登录】(附带源码)
JS渗透之咪咕登录 每篇前言:咪咕登录参数对比 captcha参数enpassword参数搜索enpassword参数搜索J_RsaPsd参数setPublic函数encrypt加密函数运行时可能会遇到的问题此部分改写的最终形态JS代码:运行结果python编写脚本运行此JS代码:运行结果&…...

CTF秀 ctfshow WEB入门 web1-10 wp精讲
目录 web1_查看源码 web3_抓包 web4-9_目录文件 web10_cookie web1_查看源码 ctrlu 查看源码 web3_抓包 查看源码,无果 抓包,找到flag web4-9_目录文件 GitHub - maurosoria/dirsearch: Web path scanner 下载dirsearch工具扫一下就都出来了 web4-…...

centos安装inpanel
前置条件 安装python yum -y install python 安装 cd /usr/local git clone https://gitee.com/WangZhe168_admin/inpanel.git cd inpanel python install.py 安装过程需要设置账户 密码 端口号 我设置的是admin:admin 10050 使用 打开浏览器,输入 http://192.168.168.…...

聊聊PowerJob Worker的ServerAddress
序 本文主要研究一下PowerJob Worker的ServerAddress PowerJobAutoConfiguration tech/powerjob/worker/autoconfigure/PowerJobAutoConfiguration.java BeanConditionalOnMissingBeanpublic PowerJobSpringWorker initPowerJob(PowerJobProperties properties) {PowerJobPr…...

师傅带练|大数据人工智能在线实习项目特色
大数据人工智能八大在线实习项目: 某实习网站招聘信息采集与分析 股票价格形态聚类与收益分析 某平台网络入侵用户自动识别 某平台广东省区采购数据分析 产品订单的数据分析与需求预测 基于注意力机制的评论者满意度分析 基于锅炉工况实现…...

ant-design-vue表格嵌套子表格,实现子表格有数据才显示左侧加号图标
ant-design-vue表格嵌套子表格,实现子表格有数据才显示左侧加号图标 通过使用插槽的方式,以下为全部项目的代码,关键的代码就两块,看注释 <template><a-card><a-form class"kit_form" ref"formRef…...

浅谈垃圾回收、内存泄漏与闭包
什么是垃圾? 在js中,垃圾通常指的是不再被程序使用的内存或对象。也就是说,垃圾是指程序中分配的内存空间或对象,但不再被程序使用或无法被访问到的内容 function createIncrease() {const doms new Array(100000).fill(0).map((…...

2 月 7 日算法练习- 数据结构-树状数组
树状数组 lowbit 在学习树状数组之前,我们需要了解lowbit操作,这是一种位运算操作,用于计算出数字的二进制表达中的最低位的1以及后面所有的0。 写法很简单: int lowbit(int x){return x &am…...

[AIGC] 开源流程引擎哪个好,如何选型?
开源流程引擎是指一种自动化的工作流解决方案,它可以帮助你管理和协调你的业务流程和决策。但是,在开源世界里,有许多不同的流程引擎可以选择。因此,如何选择适合你的开源流程引擎,是一个具有挑战性和价值的话题。 文章…...

服务器使用过程中遇到常见故障及解决方案(包括蓝屏死机、无法删除的文件如何清理、网络卡、服务器连接不上等)
互联网时代,服务器的安全性和稳定性尤为重要,支撑着整个互联网行业的信息和数据安全。最近经常有客户咨询服务器的日常故障排除方法。由于服务器复杂的硬件结构和繁琐的运行原理,经常会出现这样那样的问题,有时即使是最小的问题也…...

【推荐算法】userid是否需要建模
看到一个din的源码,将userid也构建了emb table。 于是调研了一下。即推荐算法需要建模userid吗? 深度学习推荐算法中user-id和item-id是否需要放入模型中作为特征进行训练呢? 深度学习推荐算法中user-id和item-id是否需要放入模型中作为特…...

图解支付-金融级密钥管理系统:构建支付系统的安全基石
经常在网上看到某某公司几千万的个人敏感信息被泄露,这要是放在持牌的支付公司,可能就是一个非常大的麻烦,不但会失去用户的信任,而且可能会被吊销牌照。而现实情况是很多公司的技术研发人员并没有足够深的安全架构经验来设计一套…...