堆排及时间复杂度分析
箴言:
初始阶段,不需要去纠结那一种更优美,非要找出那一种是最好的,其实能解决问题的就是好办法。
一,常见排序时间复杂度
| 冒泡 | 快排 | 归并 | 堆排 | 桶排 | |
|---|---|---|---|---|---|
| 时间 | O(n^2) | O(nlogn) | O(nlogn) | O(nlogn) | kn |
| 空间 | O(1) | O(1) | O(nlogn) | O(1) | kn |
二,堆排
前情提要:
堆属于完全树,完全树可以理解为一个数组。如果不是完全树,就没办法和数组等价,就不会有下面这种父级和子级之间的关系。
已知父级下标i
左孩子下标: 2*i+1
右孩子下标: 2*i+2
已知孩子结点j(无论左还是右)
父级下标 (j-1)/2
堆排序过程:
堆排序分成两个阶段,第一个阶段从由无序数组建立一个大/小根堆,第二个阶段在大/小根堆的基础上调整,形成有序数组。
从无序数组到大根堆:
对于数组中每一个元素,我们需要将其和其父级做对比,若比父级大,则进行交换,直到最顶层为止。
代码:(其实找父亲的时候可以不区分左右减一除二即可,我这里就不改了)
public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}
从大根堆到有序序列:
最后一个位置和堆顶交换,将交换之后的堆顶下沉到正确的位置。然后堆顶和倒数第二个交换,堆顶下沉到正确的位置,直到剩下一个为止。这是一个堆顶元素不断下沉的过程。
代码:(r表示的是最后一个的索引位置)
public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}
时间复杂度分析:
上述两个阶段分别分析: 从无序序列到建成大顶堆: 已知数组中数量为n,每正确插入一个元素,时间复杂度为logn(因为树的深度为logn),因为插入n个元素,时间复杂度为nlogn。
从大顶堆到有序序列:每次首尾交换之后都需要将堆顶元素下沉到正确的位置,时间复杂度为logn(因为树的深度为logn,比较交换次数其实是小于logn的,但是理解为logn就行),需要下沉n次,所以时间复杂度是nlogn。
ABOVE ALL,堆排时间复杂度为2nlogn,也就是O(nlogn),一切操作都是在原数组上进行的操作,所以空间复杂度为O(1)。
堆排序是一个完美的排序方式,无论时间或者空间,数据量小的时候差距不明显,数据量越大,优势就会越明显。
代码:
数组:[34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4]
import java.util.Arrays;/*** @Author YuLing* @Date 2024-02-07 19:14* @Description:* @Version 1.0*/
public class dui {public static void main(String[] args) {int[] arr = new int[]{34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4};builddui(arr);System.out.println(Arrays.toString(arr));for (int i = 0; i < arr.length; i++) {weichidui(arr, arr.length - 1 - i);}System.out.println(Arrays.toString(arr));}public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}
}
输出:
[3563, 634, 3423, 57, 537, 764, 76, 34, 6, 56, 57, 46, 536, 4, 6, 3, 33, 3, 1, 5, 5, 3, 34, 23, 4, 42, 65, 4]
[1, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 23, 33, 34, 34, 42, 46, 56, 57, 57, 65, 76, 536, 537, 634, 764, 3423, 3563]
相关文章:
堆排及时间复杂度分析
箴言: 初始阶段,不需要去纠结那一种更优美,非要找出那一种是最好的,其实能解决问题的就是好办法。 一,常见排序时间复杂度 冒泡快排归并堆排桶排时间O(n^2)O(nlogn)O(nlogn)O(nlogn)kn空间O(1)O(1)O(nlogn)O(1)kn 二ÿ…...
数据结构:双向链表
文章目录 1. 双向带头循环链表的结构2. 相关操作2.1 创建节点2.2 尾插2.3 头插2.4 打印2.5 尾删2.6 头删2.7 查找2.8 指定位置前/后插入2.9 删除指定位置的节点2.10 删除指定位置后的节点2.11 销毁链表 3.顺序表与链表区别 1. 双向带头循环链表的结构 与单链表不同的是…...
51单片机之数码管显示表白数字篇
朝菌不知晦朔 蟪蛄不知春秋 眼界决定境界 CSDN 请求进入专栏 是否进入《51单片机专栏》? 确定 目录 数码管的简介 数码管引脚定义 数码管的原理图 74HC245 代码实现 静态数码管的显示 动态数码管的显示 数码管实现表白画面 数码管的简介 L…...
代码随想录算法训练营DAY16 | 二叉树 (3)
一、LeetCode 104 二叉树的最大深度 题目链接:104.二叉树的最大深度https://leetcode.cn/problems/maximum-depth-of-binary-tree/ 思路:采用后序遍历递归求解。 class Solution {int ans 0;public int maxDepth(TreeNode root) {if(root null){retur…...
springboot(ssm大学生计算机基础网络教学系统 在线课程系统Java系统
springboot(ssm大学生计算机基础网络教学系统 在线课程系统Java系统 开发语言:Java 框架:springboot(可改ssm) vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mys…...
前端架构: 脚手架的开发流程和常用框架
脚手架的开发流程 脚手架的创建 $ npm init 脚手架的开发 分包 分包是指当我们一个脚手架比较复杂的时候,不可能把所有的js代码全部写在一个脚手架当中势必会把它建很多的不同的模块 package,通常我们会把它称之为一个分包的过程会和实际的这个项目一样…...
3.0 Hadoop 概念
本章着重介绍 Hadoop 中的概念和组成部分,属于理论章节。如果你比较着急可以跳过。但作者不建议跳过,因为它与后面的章节息息相关。 Hadoop 整体设计 Hadoop 框架是用于计算机集群大数据处理的框架,所以它必须是一个可以部署在多台计算机上…...
mysql 对于null字段排序处理
最近遇到一个需求 ,需要对一个报表的多个字段进行多字段复杂条件排序 排序字段为NULL时 Mysql对于排序字段为NULL时,有自身默认的排序规则,默认是认为null 值 是无穷小 ELECT id,script_id,last_modified,live_count,next_show FROM virtua…...
NLP_语言模型的雏形 N-Gram 模型
文章目录 N-Gram 模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时࿰…...
mac电脑flutter环境配置,解决疑难问题
准备工作 首先搭建flutter的环境需要使用到flutter的sdk,可以直接跳去官网下载:Choose your first type of app - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter,下载时要注意你电脑所使用的芯片是Intel的还是苹果的芯片。 下载好的…...
C++ bool 布尔类型
在C 中 bool类型占用1个字节长度,bool 类型只有两个取值,true 和 false,true 表示“真”,false 表示“假”。 需要注意的C中使用cout 打印的时候是没有true 和 false 的 只有0和1 ,这里0表示假,非0表示真 …...
DC-7靶机渗透详细流程
信息收集: 1.存活扫描: 由于靶机和kali都是nat的网卡,都在一个网段,我们用arp-scan会快一点: arp-scan arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6…...
提速MySQL:数据库性能加速策略全解析
提速MySQL:数据库性能加速策略全解析 引言理解MySQL性能指标监控和评估性能指标索引优化技巧索引优化实战案例 查询优化实战查询优化案例分析 存储引擎优化InnoDB vs MyISAM选择和优化存储引擎存储引擎优化实例 配置调整与系统优化配置调整系统优化优化实例 实战案例…...
Flink实战六_直播礼物统计
接上文:Flink实战五_状态机制 1、需求背景 现在网络直播平台非常火爆,在斗鱼这样的网络直播间,经常可以看到这样的总榜排名,体现了主播的人气值。 人气值计算规则:用户发送1条弹幕互动,赠送1个荧光棒免费…...
Compose | UI组件(十五) | Scaffold - 脚手架
文章目录 前言一、Scaffold脚手架简介二、Scaffold的主要组件三、如何使用Scaffold四、Compose中Scaffold脚手架的具体例子例子1:基本Scaffold布局例子2:带有Drawer的Scaffold布局例子3:带有Snackbar的Scaffold布局 总结 前言 Compose中的Sca…...
Vue-60、Vue技术router-link的replace属性
1、作用:控制路由跳转时操作浏览器历史记录的模式 2、浏览器的历史记录有两种写入方式:分别是push和replace,push是追加历史记录,replace是替换当前记录。路由跳转时候默认为push 3、如何开启replace模式: <router-link rep…...
Hive与Presto中的列转行区别
Hive与Presto列转行的区别 1、背景描述2、Hive/Spark列转行3、Presto列转行 1、背景描述 在处理数据时,我们经常会遇到一个字段存储多个值,这时需要把一行数据转换为多行数据,形成标准的结构化数据 例如,将下面的两列数据并列转换…...
探讨CSDN等级制度:博客等级、原力等级、创作者等级
个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…...
2.8作业
sqlite3数据库操作接口详细整理,以及常用的数据库语句 头文件: #include <sqlite3.h> 编译时候要加上-lsqlite3 gcc a.c -lsqlite3 1)sqlite3_open 打开一个数据库,如果数据库不存在,则创建一个数据库 2&am…...
机器学习中常用的性能度量—— ROC 和 AUC
什么是泛化能力? 通常我们用泛化能力来评判一个模型的好坏,通俗的说,泛化能力是指一个机器学期算法对新样本(即模型没有见过的样本)的举一反三的能力,也就是学以致用的能力。 举个例子,高三的…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
