当前位置: 首页 > news >正文

[机器学习]K-means——聚类算法

一.K-means算法概念

二.代码实现

# 0. 引入依赖
import numpy as np
import matplotlib.pyplot as plt # 画图依赖
from sklearn.datasets import make_blobs # 从sklearn中直接生成聚类数据# 1. 数据加载
# 生成(n_samples:样本点,centers:中心点,random_state:随机种子,cluster_std:聚类标准差)
x, y = make_blobs( n_samples=100, centers=6, random_state=1234, cluster_std=0.6 )
"""
print(x)
# 画原始图
plt.figure(figsize=(6,6))
plt.scatter(x[:,0], x[:,1], c=y)
plt.show()
"""# 2. 算法实现
# 引入scipy中的距离函数,默认欧式距离
from scipy.spatial.distance import cdistclass K_Means(object):# 初始化,每一类均值参数:n_clusters(K),迭代次数:max_iter,初始质心:centroidsdef __init__(self, n_clusters=6, max_iter=300, centroids=[]):self.n_clusters = n_clustersself.max_iter = max_iterself.centroids = np.array(centroids, dtype=np.float64)# 训练模型方法,k-means聚类过程,传入原始数据(x本身就有两个坐标)def fit(self, data):# 假如没有指定初始质心,就随机选取data中的点作为初始质心if (len(self.centroids) == 0):# 从data中随机生成0到data行数的6个整数,作为索引值# 从0到len(data)中随机选取n_clusters个self.centroids = data[np.random.randint(0, len(data), self.n_clusters), :]# 开始迭代for i in range(self.max_iter):# 1. 计算距离矩阵,得到的是一个100*6的矩阵,每一行为该样本点到6个质心的距离distances = cdist(data, self.centroids)# 2. 对距离按有近到远排序,选取最近的质心点的类别,作为当前点的分类c_ind = np.argmin(distances, axis=1)# 3. 对每一类数据进行均值计算,更新质心点坐标for i in range(self.n_clusters):# 排除掉没有出现在c_ind里的类别if i in c_ind:# 选出所有类别是i的点,取data里面坐标的均值,更新第i个质心self.centroids[i] = np.mean(data[c_ind == i], axis=0)# 实现预测方法def predict(self, samples):# 跟上面一样,先计算距离矩阵,然后选取距离最近的那个质心的类别distances = cdist(samples, self.centroids)c_ind = np.argmin(distances, axis=1)return c_ind"""
dist = np.array([[121, 221, 32, 43],[121, 1, 12, 23],[65, 21, 2, 43],[1, 221, 32, 43],[21, 11, 22, 3], ])
c_ind = np.argmin(dist, axis=1)
print(c_ind)
x_new = x[0:5]
print(x_new)
print(c_ind == 2)
print(x_new[c_ind == 2])
np.mean(x_new[c_ind == 2], axis=0)
"""# 3. 测试
# 定义一个绘制子图函数
def plotKMeans(x, y, centroids, subplot, title):# 分配子图,121表示1行2列的子图中的第一个plt.subplot(subplot)plt.scatter(x[:,0], x[:,1], c='red')# 画出质心点plt.scatter(centroids[:,0], centroids[:,1], c=np.array(range(6)), s=100)plt.title(title)# centroids指定质心初始点
kmeans = K_Means(max_iter=300, centroids=np.array([[2,1],[2,2],[2,3],[2,4],[2,5],[2,6]]))plt.figure(figsize=(16, 6))
plotKMeans( x, y, kmeans.centroids, 121, 'Initial State' )# 开始聚类
kmeans.fit(x)plotKMeans( x, y, kmeans.centroids, 122, 'Final State' )# 预测新数据点的类别
x_new = np.array([[0,0],[10,7]])
y_pred = kmeans.predict(x_new)print("经过训练的质心为:",kmeans.centroids)
print("这些点的预测为:",y_pred)plt.scatter(x_new[:,0], x_new[:,1], s=100, c='black')plt.show()

经过训练的质心为: [[ 5.76444812 -4.67941789]
 [-2.89174024 -0.22808556]
 [-5.89115978  2.33887408]
 [-4.53406813  6.11523454]
 [-1.15698106  5.63230377]
 [ 9.20551979  7.56124841]]
这些点的预测为: [1 5]

相关文章:

[机器学习]K-means——聚类算法

一.K-means算法概念 二.代码实现 # 0. 引入依赖 import numpy as np import matplotlib.pyplot as plt # 画图依赖 from sklearn.datasets import make_blobs # 从sklearn中直接生成聚类数据# 1. 数据加载 # 生成(n_samples:样本点,centers&…...

并发编程 java锁机制

1、什么是锁,为什么需要锁? 并发环境下,会存在多个线程对同一个资源进行争抢的情况,假设线程A对资源正在进行修改,此时线程B又对同一资源进行了修改,就会导致数据不一致的问题。为了解决这个问题&#xff…...

Onerugged三防平板厂家丨三年质保承诺丨三防平板PAD

行业领先产品——Onerugged三防平板。凭借着十年的经验,我们深知终端设备在各个行业中的重要性,因此致力于为用户提供高可靠性的解决方案。 Onerugged三防平板以其卓越的性能和全方位的保护功能,在市场上脱颖而出。首先,它拥有IP…...

Android 系统启动流程

一.Android系统启动流程基本框架 Android系统完整的启动过程,从系统层次角度可分为 Linux 系统层、Android 系统服务层、Zygote进程模型三个阶段;从开机到启动 Home Launcher 完成具体的任务细节可分为七个步骤,下面就从具体的细节来解读 And…...

鸿蒙学习-app.json5配置文件

官网文档参考:https://developer.harmonyos.com/cn/docs/documentation/doc-guides-V3/app-configuration-file-0000001427584584-V3 位于AppScope下的app.json5配置文件 一、基础属性 {"app": {/*包名*/"bundleName": "com.example.dem…...

华为OD机试 - 智能成绩表( Python C C++ JavaGo JS PHP)

题目描述 小明是一名新老师&#xff0c;他需要将学生按考试总分或单科分数进行排名。学生的信息包括姓名、科目和对应的分数。帮助小明完成这个任务吧&#xff01; 输入描述 第一行包含两个整数 n 和 m&#xff0c;分别代表学生人数和科目数量。 0 < n < 1000 < m &…...

训练集,验证集,测试集比例

三者的区别 训练集&#xff08;train set&#xff09; —— 用于模型拟合的数据样本。验证集&#xff08;validation set&#xff09;—— 是模型训练过程中单独留出的样本集&#xff0c;它可以用于调整模型的超参数和用于对模型的能力进行初步评估。 通常用来在模型迭代训练时…...

Altium Designer(AD)加载常用元器件库到工程图文教程及视频演示

🏡《专栏目录》 目录 视频演示1,概述2,加载方法3,总结视频演示 Altium Designer(AD)加载常用元器件库到工程 欢迎点击浏览更多高清视频演示 1,概述...

Java学习笔记2024/2/8

面向对象 //面向对象介绍 //面向: 拿、找 //对象: 能干活的东西 //面向对象编程: 拿东西过来做对应的事情 //01-如何设计对象并使用 //1.类和对象 //2.类的几个不错注意事项 1. 类和对象 1.1 类和对象的理解 客观存在的事物皆为对象 &#xff0c;所以我们也常常说万物皆对…...

【安防】三个问题:IPC和ITC主要的差异点和相同点 、影响图像成像效果的因素有哪些、摩尔纹如何产生的和消除方法

问题一、IPC和ITC主要的差异点和相同点 差异点 1、应用场景&#xff1a;IPC主要应用于普通安防监控领域&#xff0c;如广场、商场、公园、写字楼等。它们通常被用于监控室内或有限区域的安全&#xff0c;例如&#xff0c;监控办公室、仓库、门口等。而ITC则主要应用于交通领…...

Windows 安装 MySQL 最新最简教程

Windows 安装 MySQL 最新最简教程 官网地址 https://dev.mysql.com/downloads/mysql/下载 MySQL zip 文件 配置 MySQL1、解压文件 2、进入 bin 目录 搜索栏输入 cmd 回车进入命令行 C:\Users\zhong\Desktop\MySQL\mysql-8.3.0-winx64\mysql-8.3.0-winx64\bin 注意这里是你自己…...

uniapp 本地存储的方式

1. uniapp 本地存储的方式 在uniapp开发中&#xff0c;本地存储是一个常见的需求。本地存储可以帮助我们在客户端保存和管理数据&#xff0c;以便在应用程序中进行持久化存储。本文将介绍uniapp中本地存储的几种方式&#xff0c;以及相关的代码示例。 1.1. 介绍 在移动应用开发…...

25、数据结构/二叉树相关练习20240207

一、二叉树相关练习 请编程实现二叉树的操作 1.二叉树的创建 2.二叉树的先序遍历 3.二叉树的中序遍历 4.二叉树的后序遍历 5.二叉树各个节点度的个数 6.二叉树的深度 代码&#xff1a; #include<stdlib.h> #include<string.h> #include<stdio.h> ty…...

数据结构——D/二叉树

&#x1f308;个人主页&#xff1a;慢了半拍 &#x1f525; 创作专栏&#xff1a;《史上最强算法分析》 | 《无味生》 |《史上最强C语言讲解》 | 《史上最强C练习解析》 &#x1f3c6;我的格言&#xff1a;一切只是时间问题。 ​ 1.树概念及结构 1.1树的概念 树是一种非线性的…...

redis:七、集群方案(主从复制、哨兵模式、分片集群)和面试模板

redis集群方案 在Redis中提供的集群方案总共有三种&#xff08;一般一个redis节点不超过10G内存&#xff09; 主从复制哨兵模式分片集群 主从复制&#xff08;主从数据同步&#xff09; replid和offset Replication Id&#xff1a;简称replid&#xff0c;是数据集的标记&a…...

没有事情做 随手写的小程序

Qt 代码包 在百度网盘里 链接: https://pan.baidu.com/s/17yjeAkzi18upfqfD7KxXOQ?pwd6666 dialog.h : #ifndef DIALOG_H #define DIALOG_H#include <QDialog> #include <mythread.h>QT_BEGIN_NAMESPACE namespace Ui { class Dialog; } QT_END_NAMESPACEclas…...

简单说网络:TCP+UDP

TCP和UPD: (1)都工作在传输层 (2)目的都是在程序之中传输数据 (3)数据可以是文本、视频或者图片(对TCP和UDP来说都是一堆二进制数没有太大区别) 一、区别:一个基于连接一个基于非连接 将人与人之间的通信比喻为进程和进程之前的通信:基本上有两种方式(1)写信;(2)打电话;这…...

Containerd 的前世今生和保姆级入门教程

Containerd 的前世今生 很久以前&#xff0c;Docker 强势崛起&#xff0c;以“镜像”这个大招席卷全球&#xff0c;对其他容器技术进行致命的降维打击&#xff0c;使其毫无招架之力&#xff0c;就连 Google 也不例外。Google 为了不被拍死在沙滩上&#xff0c;被迫拉下脸面&…...

分享78个行业PPT,总有一款适合您

分享78个行业PPT&#xff0c;总有一款适合您 78个行业PPT下载链接&#xff1a;https://pan.baidu.com/s/19UL58I5Z1QZidVrq50v6fg?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易…...

VR全景技术可以应用在哪些行业,VR全景技术有哪些优势

引言&#xff1a; VR全景技术&#xff08;Virtual Reality Panorama Technology&#xff09;是一种以虚拟现实技术为基础&#xff0c;通过360度全景影像、立体声音、交互元素等手段&#xff0c;创造出沉浸式的虚拟现实环境。该技术不仅在娱乐领域有着广泛应用&#xff0c;还可…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...