当前位置: 首页 > news >正文

The Back-And-Forth Method (BFM) for Wasserstein Gradient Flows windows安装

本文记录了BFM算法代码在windows上的安装过程。

算法原网站:https://wasserstein-gradient-flows.netlify.app/

github:https://github.com/wonjunee/wgfBFMcodes

文章目录

  • FFTW
  • wgfBFMcodes
  • MATLAB
  • python

FFTW

官网/下载路径:https://www.fftw.org/install/windows.html

windows下FFTW安装教程可参考:

  1. https://blog.csdn.net/Jhon_ranble/article/details/120576590
  2. https://blog.csdn.net/ifenghua135792468/article/details/80608138?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0-80608138-blog-70225210.235v43pc_blog_bottom_relevance_base9&spm=1001.2101.3001.4242.1&utm_relevant_index=3

下载并解压,之后使用VS编译。

本人采用VS2017,“x86 Native Tools Command Prompt for VS 2017”和“VS 2017的 x64_x86 交叉工具命令提示符”都可以。打开后cd到fftw解压路径,输入以下三个命令

lib /machine:x64 /def:libfftw3-3.def
lib /machine:x64 /def:libfftw3l-3.def
lib /machine:x64 /def:libfftw3f-3.def

结束后如图:
在这里插入图片描述
将生成的libfftw3-3.dll, libfftw3-3f.dll, libfftw3-3l.dll放入Windows/System32中,然后将生成的库文件libfftw3-3.lib libfftw3f-3.lib libfftw3l-3.lib放入VS中的lib文件夹,把fftw3.h放入include文件夹。

wgfBFMcodes

下载github上的源码,可用git命令clone

git clone https://github.com/wonjunee/wgfBFMcodes
cd wgfBFMcodes/

MATLAB

从github clone代码后,用matlab打开,用mex命令编译。mex命令可以参考https://ww2.mathworks.cn/help/matlab/ref/mex.html#btw193f-1

在交互窗口输入

mex -setup C++
mex COMPFLAGS='$COMPFLAGS -std=c++17' src/wgfslow.cpp
mex COMPFLAGS='$COMPFLAGS -std=c++17' src/wgfinc.cpp

目前仍有报错,以后再修改。

python

打开cmd,cd到wgfBFMcodes/python下,运行compile.sh。此时程序会根据你电脑中的C/C++编译器编译src文件夹下的文件来获得接口。

可能我电脑上的C的编译器比较混乱,出现了M_PI没有定义的报错。在报错的文件添加

#define M_PI       3.14159265358979323846

即可运行。

相关文章:

The Back-And-Forth Method (BFM) for Wasserstein Gradient Flows windows安装

本文记录了BFM算法代码在windows上的安装过程。 算法原网站:https://wasserstein-gradient-flows.netlify.app/ github:https://github.com/wonjunee/wgfBFMcodes 文章目录 FFTWwgfBFMcodesMATLABpython注 FFTW 官网/下载路径:https://ww…...

【GAMES101】Lecture 19 透镜

目录 理想的薄透镜 模糊 利用透镜模型做光线追踪 景深(Depth of Field) 理想的薄透镜 在实际的相机中都是用的一组透镜来作为这个镜头 这个因为真实的棱镜无法将光线真正聚焦到一个点上,它只能聚在一堆上 所以方便研究提出了一种理想化的…...

防范恶意勒索攻击!亚信安全发布《勒索家族和勒索事件监控报告》

本周态势快速感知 本周全球共监测到勒索事件81起,事件数量有所下降,比上月降低20%。 lockbit3.0仍然是影响最严重的勒索家族;akira和incransom也是两个活动频繁的恶意家族,需要注意防范。 本周alphv勒索组织窃取MBC法律专业公司…...

AR人脸106240点位检测解决方案

美摄科技针对企业需求推出了AR人脸106/240点位检测解决方案,为企业提供高效、精准的人脸识别服务,采用先进的人脸识别算法和机器学习技术,通过高精度、高速度的检测设备,对人脸进行快速、准确地定位和识别。该方案适用于各种应用场…...

数字图像处理实验记录八(图像压缩实验)

前言:做这个实验的时候很忙,就都是你抄我我抄你了 一、基础知识 1.为什么要进行图像压缩: 图像的数据量巨大,对计算机的处理速度、存储容量要求高。传输信道带宽、通信链路容量一定,需要减少传输数据量&a…...

navigator.mediaDevices.getUserMedia获取本地音频/麦克权限并提示用户

navigator.mediaDevices.getUserMedia获取本地音频/麦克权限并提示用户 效果获取权限NotFoundErrorNotAllowedError 代码 效果 获取权限 NotFoundError NotAllowedError 代码 // 调用 captureLocalMedia()// 方法 function captureLocalMedia() {console.warn(Requesting lo…...

CTF-show WEB入门--web19

今晚web19也就顺便解决了 老样子我们先打开题目看看题目提示: 可以看到题目提示为: 密钥什么的,就不要放在前端了 然后我们打开题目链接: 然后我们查看网页源代码: 可以发现有用的内容全在网页源代码里。 前端验证…...

04 使用gRPC实现客户端和服务端通信

使用gRPC实现客户端和服务端通信 参考文档: 基于C#的GRPC 1 创建项目和文件夹 GrpcClientDemoGrpcServerDemoProtos解决方案和文件夹1.1 添加nuget依赖 客户端和服务器都要有依赖和gRPC_Objects文件夹 <ItemGroup><PackageReference Include"Google.Protobu…...

设计模式-行为型模式(下)

1.访问者模式 访问者模式在实际开发中使用的非常少,因为它比较难以实现并且应用该模式肯能会导致代码的可读性变差,可维护性变差,在没有特别必要的情况下,不建议使用访问者模式. 访问者模式(Visitor Pattern) 的原始定义是&#xff1a; 允许在运行时将一个或多个操作应用于一…...

华为交换机常用命令

一、查看命令 1、查看交换机信息 display version 查看交换机软件版本display clock 查看交换机时钟2、查看交换机配置 display saved-configuration 显示系统保存配置display current-configuration 显示系统当前配置 3、查看当前对象信息 display this …...

【Linux】信号-上

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;信号的概念与产生jobs命令普通信号和实…...

uniapp 开发App 权限授权 js-sdk

从官网的插件市场下载的&#xff1a; 直接上代码&#xff1a; /*** 本模块封装了Android、iOS的应用权限判断、打开应用权限设置界面、以及位置系统服务是否开启*/var isIos // #ifdef APP-PLUS isIos (plus.os.name "iOS") // #endif// 判断推送权限是否开启 fu…...

【01】判断素数/质数(C语言)

目录 &#xff08;1&#xff09;素数特点&#xff1a;只能被1和本身整除 &#xff08;2&#xff09;代码如下&#xff1a; &#xff08;3&#xff09;运行结果如下 ​编辑 &#xff08;4&#xff09;函数引申 &#xff08;1&#xff09;素数特点&#xff1a;只能被1和本身…...

特征工程:特征提取和降维-上

目录 一、前言 二、正文 Ⅰ.主成分分析 Ⅱ.核主成分分析 三、结语 一、前言 前面介绍的特征选择方法获得的特征&#xff0c;是从原始数据中抽取出来的&#xff0c;并没有对数据进行变换。而特征提取和降维&#xff0c;则是对原始数据的特征进行相应的数据变换&#xff0c;并…...

前端JavaScript篇之强类型语言和弱类型语言的区别和对比

目录 强类型语言和弱类型语言的区别和对比总结 强类型语言和弱类型语言的区别和对比 强类型语言和弱类型语言是编程语言的两种不同类型系统&#xff0c;它们处理变量类型的方式有所不同。 强类型语言&#xff1a; 强类型语言要求在使用变量之前必须明确声明其类型&#xff0c;…...

[红日靶机渗透] ATKCK红队评估实战靶场三

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【ATK&CK红队评估实战靶场】 【VulnHub靶场复现】【面试分析】 &#x1f…...

网课:N皇后问题——牛客(题解和疑问)

题目描述 给出一个nnn\times nnn的国际象棋棋盘&#xff0c;你需要在棋盘中摆放nnn个皇后&#xff0c;使得任意两个皇后之间不能互相攻击。具体来说&#xff0c;不能存在两个皇后位于同一行、同一列&#xff0c;或者同一对角线。请问共有多少种摆放方式满足条件。 输入描述: …...

[大厂实践] Netflix容器平台内核panic可观察性实践

在某些情况下&#xff0c;K8S节点和Pod会因为出错自动消失&#xff0c;很难追溯原因&#xff0c;其中一种情况就是发生了内核panic。本文介绍了Netflix容器平台针对内核panic所做的可观测性增强&#xff0c;使得发生内核panic的时候&#xff0c;能够导出信息&#xff0c;帮助排…...

2024/2/8

数据类型与作用域练习 1、选择题 1.1、以下选项中,不能作为合法常量的是 ___b_______ A&#xff09;1.234e04 B&#xff09;1.234e0.4 C&#xff09;1.234e4 D&#xff09;1.234e0 1.2、以下定义变量并初始化错误的是______d_______。 A) char c1 ‘H’ &am…...

Verilog刷题笔记23

题目: Suppose you’re building a circuit to process scancodes from a PS/2 keyboard for a game. Given the last two bytes of scancodes received, you need to indicate whether one of the arrow keys on the keyboard have been pressed. This involves a fairly simp…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...