当前位置: 首页 > news >正文

【Iceberg学习三】Reporting和Partitioning原理

Metrics Reporting

Type of Reports

从 1.1.0 版本开始,Iceberg 支持 MetricsReporter 和 MetricsReport API。这两个 API 允许表达不同的度量报告,并支持一种可插拔的方式来报告这些报告。

ScanReport(扫描报告)

扫描报告(ScanReport)记录了在对一个给定表进行扫描规划时收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总扫描规划持续时间
  • 结果中包含的数据/删除文件数量
  • 扫描/跳过的数据/删除清单文件数量
  • 扫描/跳过的数据/删除文件数量
  • 扫描的等值/位置删除文件数量
CommitReport(提交报告)

提交报告记录了在提交对表的更改(也就是生成快照)之后收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总持续时间
  • 提交成功所需的尝试次数
  • 增加/移除的数据/删除文件数量
  • 增加/移除的等值/位置删除文件数量
  • 增加/移除的等值/位置删除操作数量

Available Metrics Reporters

LoggingMetricsReporter

这是在没有配置其他指标报告器时的默认指标报告器,其目的是将结果记录到日志文件中。示例输出如下所示:

INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
ScanReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=2, filter=ref(name="data") == "(hash-27fa7cc0)", schemaId=0, projectedFieldIds=[1, 2], projectedFieldNames=[id, data], scanMetrics=ScanMetricsResult{totalPlanningDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.026569404S, count=1}, resultDataFiles=CounterResult{unit=COUNT, value=1}, resultDeleteFiles=CounterResult{unit=COUNT, value=2}, totalDataManifests=CounterResult{unit=COUNT, value=1}, totalDeleteManifests=CounterResult{unit=COUNT, value=1}, scannedDataManifests=CounterResult{unit=COUNT, value=1}, skippedDataManifests=CounterResult{unit=COUNT, value=0}, totalFileSizeInBytes=CounterResult{unit=BYTES, value=10}, totalDeleteFileSizeInBytes=CounterResult{unit=BYTES, value=20}, skippedDataFiles=CounterResult{unit=COUNT, value=0}, skippedDeleteFiles=CounterResult{unit=COUNT, value=0}, scannedDeleteManifests=CounterResult{unit=COUNT, value=1}, skippedDeleteManifests=CounterResult{unit=COUNT, value=0}, indexedDeleteFiles=CounterResult{unit=COUNT, value=2}, equalityDeleteFiles=CounterResult{unit=COUNT, value=1}, positionalDeleteFiles=CounterResult{unit=COUNT, value=1}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
CommitReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=1, sequenceNumber=1, operation=append, commitMetrics=CommitMetricsResult{totalDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.098429626S, count=1}, attempts=CounterResult{unit=COUNT, value=1}, addedDataFiles=CounterResult{unit=COUNT, value=1}, removedDataFiles=null, totalDataFiles=CounterResult{unit=COUNT, value=1}, addedDeleteFiles=null, addedEqualityDeleteFiles=null, addedPositionalDeleteFiles=null, removedDeleteFiles=null, removedEqualityDeleteFiles=null, removedPositionalDeleteFiles=null, totalDeleteFiles=CounterResult{unit=COUNT, value=0}, addedRecords=CounterResult{unit=COUNT, value=1}, removedRecords=null, totalRecords=CounterResult{unit=COUNT, value=1}, addedFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, removedFilesSizeInBytes=null, totalFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, addedPositionalDeletes=null, removedPositionalDeletes=null, totalPositionalDeletes=CounterResult{unit=COUNT, value=0}, addedEqualityDeletes=null, removedEqualityDeletes=null, totalEqualityDeletes=CounterResult{unit=COUNT, value=0}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
RESTMetricsReporter

当使用 RESTCatalog 时,这是默认配置,其目的是将指标发送到 REST 服务器,在 /v1/{prefix}/namespaces/{namespace}/tables/{table}/metrics 端点,如 REST OpenAPI 规范中所定义。

通过 REST 发送指标可以通过 rest-metrics-reporting-enabled(默认为 true)属性进行控制。

Implementing a custom Metrics Reporter

实现 MetricsReporter API 在处理传入的 MetricsReport 实例时提供了完全的灵活性。例如,可以将结果发送到 Prometheus 端点或任何其他可观测性框架/系统。

下面是一个简短的示例,说明了一个 InMemoryMetricsReporter,它将报告存储在一个列表中并使其可用:

public class InMemoryMetricsReporter implements MetricsReporter {private List<MetricsReport> metricsReports = Lists.newArrayList();@Overridepublic void report(MetricsReport report) {metricsReports.add(report);}public List<MetricsReport> reports() {return metricsReports;}
}

Registering a custom Metrics Reporter

Via Catalog Configuration

目录属性 metrics-reporter-impl 通过指定其完全限定类名来允许注册一个指定的 MetricsReporter,例如 metrics-reporter-impl=org.apache.iceberg.metrics.InMemoryMetricsReporter。

Via the Java API during Scan planning

即使已经通过 metrics-reporter-impl 属性在目录级别注册了 MetricsReporter,也可以在扫描规划期间提供额外的报告器,如下所示:

TableScan tableScan = table.newScan().metricsReporter(customReporterOne).metricsReporter(customReporterTwo);try (CloseableIterable<FileScanTask> fileScanTasks = tableScan.planFiles()) {// ...
}

Partitioning(分区)

什么是分区

分区是一种通过在写入时将相似的行分组在一起来加速查询的方法。

例如,从日志表查询日志条目通常会包含一个时间范围,就像这个查询在上午10点到12点之间的日志:

SELECT level, message FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00';

将日志表配置为按 event_time 的日期进行分区,将把具有相同事件日期的日志事件分组到同一个文件中。Iceberg 跟踪那个日期,并将使用它来跳过其他没有有用数据的日期的文件。

Iceberg 可以按年、月、日和小时的粒度来分区时间戳。它还可以使用分类列,比如在这个日志示例中的 level,将行存储在一起以加速查询。

iceberg做了什么不一样的地方

其他表格格式如 Hive 支持分区,但 Iceberg 支持隐藏分区。

  1. Iceberg 处理了表中行生成分区值的繁琐且容易出错的任务。
  2. Iceberg 自动避免读取不必要的分区。使用者无需知晓表是如何分区的,也无需在他们的查询中添加额外的过滤器。
  3. Iceberg 的分区布局可以根据需要进行演变。

HIVE中的分区

为了演示差异,考虑一下 Hive 将如何处理日志表。

在 Hive 中,分区是显式的并且表现为一个列,所以日志表会有一个名为 event_date 的列。在写入时,插入操作需要为 event_date 列提供数据:

INSERT INTO logs PARTITION (event_date)SELECT level, message, event_time, format_time(event_time, 'YYYY-MM-dd')FROM unstructured_log_source;

同样,搜索日志表的查询除了需要一个 event_time 过滤器外,还必须有一个 event_date 过滤器。

SELECT level, count(1) as count FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00'AND event_date = '2018-12-01';

如果缺少 event_date 过滤器,Hive 会扫描表中的每一个文件,因为它不知道 event_time 列与 event_date 列之间的关系。

Hive分区方式的问题

Hive 必须被给定分区值。在日志示例中,它不知道 event_time 和 event_date 之间的关系。

这导致了几个问题:

  1. Hive 不能验证分区值 —— 正确值的产生取决于写入者
  2. 使用错误的格式,例如使用 2018-12-01 而不是 20181201,会导致悄无声息的错误结果,而不是查询失败
  3. 使用错误的源列,如 processing_time,或者错误的时区,也会导致错误的结果,而不是失败
  4. 用户需要正确编写查询
  5. 使用错误的格式也会导致悄无声息的错误结果
  6. 不理解表的物理布局的用户会遇到不必要的慢查询 —— Hive 不能自动转换过滤器
  7. 正常工作的查询与表的分区方案绑定,因此分区配置不能在不破坏查询的情况下更改

Iceberg的隐藏分区

Iceberg 通过获取列值并可选择对其进行转换来产生分区值。Iceberg 负责将 event_time 转换为 event_date,并跟踪这种关系。

表的分区是使用这些关系来配置的。日志表将按照 date(event_time) 和 level 来进行分区。

因为 Iceberg 不要求用户维护分区列,所以它可以隐藏分区。分区值每次都能正确产生,并且总是在可能的情况下用于加速查询。生产者和消费者甚至可能看不到 event_date。

最重要的是,查询不再依赖于表的物理布局。有了物理和逻辑之间的分离,Iceberg 表可以随着数据量的变化,随时间演进其分区方案。配置错误的表可以在不进行昂贵迁移的情况下修复。

有关所有支持的隐藏分区转换的详细信息,请参阅分区转换部分。

有关更新表的分区规范的详细信息,请参阅分区演化部分。

相关文章:

【Iceberg学习三】Reporting和Partitioning原理

Metrics Reporting Type of Reports 从 1.1.0 版本开始&#xff0c;Iceberg 支持 MetricsReporter 和 MetricsReport API。这两个 API 允许表达不同的度量报告&#xff0c;并支持一种可插拔的方式来报告这些报告。 ScanReport&#xff08;扫描报告&#xff09; 扫描报告&am…...

肯尼斯·里科《C和指针》第12章 使用结构和指针(1)链表

只恨当时学的时候没有读到这本书&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c; 12.1 链表 有些读者可能还不熟悉链表&#xff0c;这里对它作一简单介绍。链表(linked list)就一些包含数据的独立数据结构&#xff08;通常称为节点&#xff09;的集…...

Xray 工具笔记

Xray 官方文档 扫描单个url&#xff08;非爬虫&#xff09; 并输出文件&#xff08;不同文件类型&#xff09; .\xray.exe webscan --url 10.0.0.6:8080 --text-output result.txt --json-output result.json --html-output report.html默认启动所以内置插件 &#xff0c;指定…...

Linux环境下配置HTTP代理服务器教程

大家好&#xff0c;我是你们可爱的Linux小助手&#xff01;今天&#xff0c;我将带你们一起探索如何在Linux环境下配置一个HTTP代理服务器。请注意&#xff0c;这不是一次火箭科学的实验&#xff0c;而是一次简单而有趣的冒险。 首先&#xff0c;我们需要明确什么是HTTP代理服…...

JavaEE作业-实验三

目录 1 实验内容 2 实验要求 3 思路 4 核心代码 5 实验结果 1 实验内容 简单的线上图书交易系统的web层 2 实验要求 ①采用SpringMVC框架&#xff0c;采用REST风格 ②要求具有如下功能&#xff1a;商品分类、订单、购物车、库存 ③独立完成&#xff0c;编写实验报告 …...

K8S容器挂了后重启状态正常,但应用无法访问排查处理

K8S容器挂了后重启状态正常&#xff0c;但应用无法访问排查处理 背景&#xff1a; 应用迁移K8S后因POD OOM挂了后重启&#xff0c;集群上POD状态正常&#xff0c;但应用无法访问。 排查&#xff1a; 查看应用日志&#xff0c;是启动时调用特权账号管理系统超时&#xff0c;…...

问题:老年人心理健康维护与促进的原则为________、________、发展原则。 #媒体#知识分享

问题&#xff1a;老年人心理健康维护与促进的原则为________、________、发展原则。 参考答案如图所示...

【超高效!保护隐私的新方法】针对图像到图像(l2l)生成模型遗忘学习:超高效且不需要重新训练就能从生成模型中移除特定数据

针对图像到图像生成模型遗忘学习&#xff1a;超高效且不需要重新训练就能从生成模型中移除特定数据 提出背景如何在不重训练模型的情况下从I2I生成模型中移除特定数据&#xff1f; 超高效的机器遗忘方法子问题1: 如何在图像到图像&#xff08;I2I&#xff09;生成模型中进行高效…...

Transformer的PyTorch实现之若干问题探讨(二)

在《Transformer的PyTorch实现之若干问题探讨&#xff08;一&#xff09;》中探讨了Transformer的训练整体流程&#xff0c;本文进一步探讨Transformer训练过程中teacher forcing的实现原理。 1.Transformer中decoder的流程 在论文《Attention is all you need》中&#xff0…...

解释Python中的GIL(全局解释器锁)及其影响。描述Python中的垃圾回收机制。Python中的类变量和实例变量有什么区别

解释Python中的GIL&#xff08;全局解释器锁&#xff09;及其影响 Python中的GIL&#xff08;全局解释器锁&#xff09;是CPython解释器中的一个机制&#xff0c;用于同步线程的执行。GIL确保任何时候只有一个线程在执行Python字节码。这意味着&#xff0c;即使在多核或多处理器…...

Appium使用初体验之参数配置,简单能够运行起来

一、服务器配置 Appium Server配置与Appium Server GUI&#xff08;可视化客户端&#xff09;中的配置对应&#xff0c;尤其是二者如果不在同一台机器上&#xff0c;那么就需要配置Appium Server GUI所在机器的IP&#xff08;Appium Server GUI的HOST也需要配置本机IP&#xf…...

Java:JDK8新特性(Stream流)、File类、递归 --黑马笔记

一、JDK8新特性&#xff08;Stream流&#xff09; 接下来我们学习一个全新的知识&#xff0c;叫做Stream流&#xff08;也叫Stream API&#xff09;。它是从JDK8以后才有的一个新特性&#xff0c;是专业用于对集合或者数组进行便捷操作的。有多方便呢&#xff1f;我们用一个案…...

【Unity ShaderGraph】| 物体靠近时局部溶解,根据坐标控制溶解的位置【文末送书】

前言 【Unity ShaderGraph】| 物体靠近时局部溶解&#xff0c;根据坐标控制溶解的位置一、效果展示二、根据坐标控制溶解的位置&#xff0c;物体靠近局部溶解三、应用实例&#x1f451;评论区抽奖送书 前言 本文将使用ShaderGraph制作一个根据坐标控制溶解的位置&#xff0c;物…...

测试OpenSIPS3.4.3的lua模块

这几天测试OpenSIPS3.4.3的lua模块&#xff0c;记录如下&#xff1a; 有bug&#xff0c;但能用 但现实世界就是这样&#xff0c;总是不完美的&#xff0c;发现之后马上提了issue 下面这段代码运行报错&#xff1a; function func1(msg) xlog("ERR","…...

【机器学习】数据清洗之处理缺失点

&#x1f388;个人主页&#xff1a;甜美的江 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进步…...

Linux 命令行的世界 :2.文件系统中跳转

我们需要学习的第一件事&#xff08;除了打字之外&#xff09;是如何在 Linux 文件系统中跳转。在这一章节中&#xff0c;我们将介绍以下命令&#xff1a;pwd 打印出当前工作目录名 cd 更改目录 ls 列出目录内容 Linux以分层目录结构来组织所有文件。这就意味着所有文件…...

R语言:箱线图绘制(添加平均值趋势线)

箱线图绘制 1. 写在前面2.箱线图绘制2.1 相关R包导入2.2 数据导入及格式转换2.3 ggplot绘图 1. 写在前面 今天有时间把之前使用过的一些代码和大家分享&#xff0c;其中箱线图绘制我认为是非常有用的一个部分。之前我是比较喜欢使用origin进行绘图&#xff0c;但是绘制的图不太…...

Open3D 模型切片

目录 一、算法原理1、算法过程2、主要函数二、代码实现三、结果展示1、原始数据2、切片结果本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理...

KtConnect 本地连接连接K8S工具

KT Connect简介 Kt Connect &#xff08;Kubernetes Developer Tool&#xff09;是一个阿里开源、轻量级的面向 Kubernetes 用户的开发测试环境治理辅助工具。其核心是通过建立本地到集群以及集群到本地的双向通道。 1.阿里开源&#xff0c;轻量级, 2. 安装快捷简单&#xf…...

【Java万花筒】数据的安全钥匙:Java的加密与保护方法

编码的盾牌&#xff1a;Java开发人员的安全性武器库 前言 在当今数字化时代&#xff0c;保护用户数据和信息的安全已成为开发人员的首要任务。无论是在Web应用程序开发还是安全测试中&#xff0c;加密和安全性都是至关重要的。本文将介绍六个Java库和工具&#xff0c;它们为开…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...