Elasticsearch:使用查询规则(query rules)进行搜索
在之前的文章 “Elasticsearch 8.10 中引入查询规则 - query rules”,我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearch 中,并使用 rule_query 查询它们。
安装
安装 Elasticsearch 及 Kibana
如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:
-
如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch
-
Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana
在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

环境变量
在启动 Jupyter 之前,我们设置如下的环境变量:
export ES_USER="elastic"
export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
export ES_ENDPOINT="localhost"
请在上面修改相应的变量的值。这个需要在启动 jupyter 之前运行。
拷贝 Elasticsearch 证书
我们把 Elasticsearch 的证书拷贝到当前的目录下:
$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt
http_ca.crt
安装 Python 依赖包
python3 -m pip install -qU elasticsearch load_dotenv
准备数据
我们在项目当前的目录下创建如下的数据文件:
query-rules-data.json
[{"id": "us1","content": {"name": "PureJuice Pro","description": "PureJuice Pro: Experience the pinnacle of wireless charging. Blending rapid charging tech with sleek design, it ensures your devices are powered swiftly and safely. The future of charging is here.","price": 15.00,"currency": "USD","plug_type": "B","voltage": "120v"}},{"id": "uk1","content": {"name": "PureJuice Pro - UK Compatible","description": "PureJuice Pro: Redefining wireless charging. Seamlessly merging swift charging capabilities with a refined aesthetic, it guarantees your devices receive rapid and secure power. Welcome to the next generation of charging.","price": 20.00,"currency": "GBP","plug_type": "G","voltage": "230V"}},{"id": "eu1","content": {"name": "PureJuice Pro - Wireless Charger suitable for European plugs","description": "PureJuice Pro: Elevating wireless charging. Combining unparalleled charging speeds with elegant design, it promises both rapid and dependable energy for your devices. Embrace the future of wireless charging.","price": 18.00,"currency": "EUR","plug_type": "C","voltage": "230V"}},{"id": "preview1","content": {"name": "PureJuice Pro - Pre-order next version","description": "Newest version of the PureJuice Pro wireless charger, coming soon! The newest model of the PureJuice Pro boasts a 2x faster charge than the current model, and a sturdier cable with an eighteen month full warranty. We also have a battery backup to charge on-the-go, up to two full charges. Pre-order yours today!","price": 36.00,"currency": "USD","plug_type": ["B", "C", "G"],"voltage": ["230V", "120V"]}}
]
创建应用并展示
我们在当前的目录下打入如下的命令来创建 notebook:
$ pwd
/Users/liuxg/python/elser
$ jupyter notebook
导入包及连接到 Elasticsearch
from elasticsearch import Elasticsearch
from dotenv import load_dotenv
import osload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)print(client.info())

索引一些测试数据
我们的客户端已设置并连接到我们的 Elastic 部署。 现在我们需要一些数据来测试 Elasticsearch 查询的基础知识。 我们将使用具有以下字段的小型产品索引:
namedescriptionpricecurrencyplug_typevoltage
运行以下命令上传一些示例数据:
import json# Load data into a JSON object
with open('query-rules-data.json') as f:docs = json.load(f)operations = []
for doc in docs:operations.append({"index": {"_index": "products_index", "_id": doc["id"]}})operations.append(doc["content"])
client.bulk(index="products_index", operations=operations, refresh=True)

我们可以在 Kibana 中进行查看:

搜索测试数据
首先,让我们搜索数据寻找 “reliable wireless charger.”。
在搜索数据之前,我们将定义一些方便的函数,将来自 Elasticsearch 的原始 JSON 响应输出为更易于理解的格式。
def pretty_response(response):if len(response['hits']['hits']) == 0:print('Your search returned no results.')else:for hit in response['hits']['hits']:id = hit['_id']score = hit['_score']name = hit['_source']['name']description = hit['_source']['description']price = hit["_source"]["price"]currency = hit["_source"]["currency"]plug_type = hit["_source"]["plug_type"]voltage = hit["_source"]["voltage"]pretty_output = (f"\nID: {id}\nName: {name}\nDescription: {description}\nPrice: {price}\nCurrency: {currency}\nPlug type: {plug_type}\nVoltage: {voltage}\nScore: {score}")print(pretty_output)def pretty_ruleset(response):print("Ruleset ID: " + response['ruleset_id'])for rule in response['rules']:rule_id = rule['rule_id']type = rule['type']print(f"\nRule ID: {rule_id}\n\tType: {type}\n\tCriteria:")criteria = rule['criteria']for rule_criteria in criteria:criteria_type = rule_criteria['type']metadata = rule_criteria['metadata']values = rule_criteria['values']print(f"\t\t{metadata} {criteria_type} {values}")ids = rule['actions']['ids']print(f"\tPinned ids: {ids}")
接下来,进行搜索
不使用 query rules 的正常搜索
response = client.search(index="products_index", query={"multi_match": {"query": "reliable wireless charger for iPhone","fields": [ "name^5", "description" ]}
})pretty_response(response)

创建 query rules
我们分别假设,我们知道我们的用户来自哪个国家/地区(可能通过 IP 地址或登录的用户帐户信息进行地理位置定位)。 现在,我们希望创建查询规则,以便当人们搜索包含短语 “wireless charger (无线充电器)” 的任何内容时,根据该信息增强无线充电器的性能。
client.query_ruleset.put(ruleset_id="promotion-rules", rules=[{"rule_id": "us-charger","type": "pinned","criteria": [{"type": "contains","metadata": "my_query","values": ["wireless charger"]},{"type": "exact","metadata": "country","values": ["us"]}],"actions": {"ids": ["us1"]}},{"rule_id": "uk-charger","type": "pinned","criteria": [{"type": "contains","metadata": "my_query","values": ["wireless charger"]},{"type": "exact","metadata": "country","values": ["uk"]}],"actions": {"ids": ["uk1"]}}])
为了使这些规则匹配,必须满足以下条件之一:
- my_query 包含字符串 “wireless charger” 并且 country “us”
- my_query 包含字符串 “wireless charger” 并且 country 为 “uk”
我们也可以使用 API 查看我们的规则集(使用另一个 Pretty_ruleset 函数以提高可读性):
response = client.query_ruleset.get(ruleset_id="promotion-rules")
pretty_ruleset(response)

response = client.search(index="products_index", query={"rule_query": {"organic": {"multi_match": {"query": "reliable wireless charger for iPhone","fields": [ "name^5", "description" ]}},"match_criteria": {"my_query": "reliable wireless charger for iPhone","country": "us"},"ruleset_id": "promotion-rules"}
})pretty_response(response)

整个 notebook 的源码可以在地址下载:https://github.com/liu-xiao-guo/semantic_search_es/blob/main/search_using_query_rules.ipynb
相关文章:
Elasticsearch:使用查询规则(query rules)进行搜索
在之前的文章 “Elasticsearch 8.10 中引入查询规则 - query rules”,我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearc…...
Java核心设计模式:代理设计模式
一、生活中常见的代理案例 房地产中介:客户手里没有房源信息,找一个中介帮忙商品代购:代理者一般有好的资源渠道,降低购物成本(如海外代购,自己不用为了买东西出国) 二、为什么要使用代理 对…...
JSP编程
JSP编程 您需要理解在JSP API的类和接口中定义的用于创建JSP应用程序的各种方法的用法。此外,还要了解各种JSP组件,如在前一部分中学习的JSP动作、JSP指令及JSP脚本。JSP API中定义的类提供了可借助隐式对象通过JSP页面访问的方法。 1. JSP API的类 JSP API是一个可用于创建…...
【Flink入门修炼】1-1 为什么要学习 Flink?
流处理和批处理是什么? 什么是 Flink? 为什么要学习 Flink? Flink 有什么特点,能做什么? 本文将为你解答以上问题。 一、批处理和流处理 早些年,大数据处理还主要为批处理,一般按天或小时定时处…...
刘谦龙年春晚魔术模拟
守岁共此时 代码 直接贴代码了,异常处理有点问题,正常流程能跑通 package com.yuhan.snginx.util.chunwan;import java.util.*;/*** author yuhan* since 2024/02/10*/ public class CWMS {static String[] num {"A", "2", &quo…...
re:从0开始的CSS学习之路 9. 盒子水平布局
0. 写在前面 过年也不能停止学习,一停下就难以为继,实属不应 1. 盒子的水平宽度 当一个盒子出现在另一个盒子的内容区时,该盒子的水平宽度“必须”等于父元素内容区的宽度 盒子水平宽度: margin-left border-left padding-lef…...
【MySQL基础】:深入探索DQL数据库查询语言的精髓(上)
🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. DQL1.1 基本语法1.2 基础查询1.3 条件查询1.3 聚合函数 🌤️ 全篇…...
JavaScript实现轮播图方法
效果图 先来看下效果图,嫌麻烦就不用具体图片来实现了,主要是理清思路。(自动轮播,左右按钮切换图片,小圆点切换图片,鼠标移入暂停轮播,鼠标移出继续轮播) HTML 首先是html内容&am…...
Web课程学习笔记--jsonp的原理与简单实现
jsonp的原理与简单实现 原理 由于同源策略的限制,XmlHttpRequest只允许请求当前源(域名、协议、端口)的资源,为了实现跨域请求,可以通过script标签实现跨域请求,然后在服务端输出JSON数据并执行回调函数&…...
第78讲 修改密码
系统管理实现 修改密码实现 前端 modifyPassword.vue: <template><el-card><el-formref"formRef":model"form":rules"rules"label-width"150px"><el-form-item label"用户名:&quo…...
Docker 容器网络:C++ 客户端 — 服务器应用程序。
一、说明 在下面的文章中, 将向您概述 docker 容器之间的通信。docker 通信的验证将通过运行 C 客户端-服务器应用程序和标准“ping”命令来执行。将构建并运行两个单独的 Docker 映像。 由于我会关注 docker 网络方面,因此不会提供 C 详细信息。…...
Android 识别车牌信息
打开我们心爱的Android Studio 导入需要的资源 gradle //开源车牌识别安卓SDK库implementation("com.github.HyperInspire:hyperlpr3-android-sdk:1.0.3")button.setOnClickListener(v -> {Log.d("Test", "");try (InputStream file getAs…...
C#在窗体正中输出文字以及输出文字的画刷使用
为了在窗体正中输出文字,需要获得输出文字区域的宽和高,这使用MeasureString方法,方法返回值为Size类型; 然后计算输出的起点的x和y坐标,就可以输出了; using System; using System.Collections.Generic; …...
二十、K8S-1-权限管理RBAC详解
目录 k8s RBAC 权限管理详解 一、简介 二、用户分类 1、普通用户 2、ServiceAccount 三、k8s角色&角色绑定 1、授权介绍: 1.1 定义角色: 1.2 绑定角色: 1.3主体(subject) 2、角色(Role和Cluster…...
【PTA|期末复习|编程题】数组相关编程题(一)
目录 7-1 乘法口诀数列 (20分) 输入格式: 输出格式: 输入样例: 输出样例: 样例解释: 代码 7-2 矩阵列平移(20分) 输入格式: 输出格式: 输入样例: 输出样例: …...
[office] 怎么在Excel2003菜单栏自定义一个选项卡 #其他#微信#知识分享
怎么在Excel2003菜单栏自定义一个选项卡 怎么在Excel2003菜单栏自定义一个选项卡 ①启动Excel2003,单击菜单栏--工具--自定义。 ②在自定义界面,我们单击命令标签,在类别中选择新菜单,鼠标左键按住新菜单,拖放到菜单栏…...
面试 JavaScript 框架八股文十问十答第六期
面试 JavaScript 框架八股文十问十答第六期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的!关注专栏后就能收到持续更新! ⭐点赞⭐收藏⭐不迷路!⭐ 1)use strict是什么…...
【Web】小白友好的Java内存马基础学习笔记
目录 简介 文件马与内存马的比较 文件马原理 内存马原理 内存马使用场景 内存马分类 内存马注入方式 这篇文章主要是概念性的,具体技术细节不做探究,重点在祛魅。 简介 内存马(Memory Shellcode)是一种恶意攻击技术&…...
Rust猜数字游戏
Rust进阶:猜数字游戏 Rust是一门现代的系统级编程语言,注重内存安全、并发性能以及表达力。在这篇博客中,我们将深入介绍一个更加复杂的猜数字游戏代码,展示Rust语言的一些高级特性。 代码示例 以下是一个升级版的Rust猜数字游…...
.gitlab-ci.yml文件参数配置和使用
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
大数据治理的常见方式
大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法,以下是几种常见的治理方式: 1. 数据质量管理 核心方法: 数据校验:建立数据校验规则(格式、范围、一致性等)数据清洗&…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
