kafka 文件存储机制
文章目录
- 1. 思考四个问题:
- 1.1 topic中partition存储分布:
- 1.2 partiton中文件存储方式:
- 1.3 partiton中segment文件存储结构:
- 1.4 在partition中如何通过offset查找message:
- 2. kafka日志存储参数配置
- Topic是逻辑上的概念,而partition是物理上的概念
- 每个partition对应于一个log文件,该log文件中存储的就是Producer生产的数据。
- Producer生产的数据会被不断追加到该log文件末端,为防止log文件过大导致数据定位效率低下(不需要先查出来数据,直接往最后追加,也是kafka可以高效读写的原因之一),Kafka采取了分片和索引机制,将每个partition分为多个segment。(segment默认大小为1GB)
- 每个segment包括:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。

1. 思考四个问题:
- topic中partition存储分布
- partiton中文件存储方式
- partiton中segment文件存储结构
- 在partition中如何通过offset查找message
1.1 topic中partition存储分布:
- 在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。
- 每个partition下面有多个segment。
1.2 partiton中文件存储方式:
- 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
- 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。
1.3 partiton中segment文件存储结构:
- segment file由segment索引文件、数据文件2部分组成,这两个文件一一对应,后缀是”.index”和“.log”,分别表示为segment索引文件、数据文件
- segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。


1.4 在partition中如何通过offset查找message:

- segment的索引文件命令规则:起始偏移量(offset)为0.后续每个segment文件名为上一个segment文件最后一条消息的offset值,所以,第二个文件00000000000000000522.index的文件名是上一个log中最大偏移量+1(521+1=522),其他后续文件依次类推,只要根据offset 二分查找 文件列表,就可以快速定位到具体文件。 当offset=600时定位到00000000000000000522.index|log,用index文件名上的数字+相对offset计算log文件中数据存在的位置,522+65=587,522+117=639,587 < 600 < 639,所以Offset=600的数据在position=6410的位置往下顺扫。
segment index file采取稀疏索引存储方式,不会为每条数据创建索引,大大的减少索了引文件大小。
2. kafka日志存储参数配置
| 参数 | 描述 |
|---|---|
| log.segment.bytes | Kafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分成块的大小,默认值 1G。 |
| log.index.interval.bytes | 稀疏索引间存储数据的大小,默认 4kb,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 |
相关文章:
kafka 文件存储机制
文章目录 1. 思考四个问题:1.1 topic中partition存储分布:1.2 partiton中文件存储方式:1.3 partiton中segment文件存储结构:1.4 在partition中如何通过offset查找message: 2. kafka日志存储参数配置 Topic是逻辑上的概念ÿ…...
引入BertTokenizer出现OSError: Can‘t load tokenizer for ‘bert-base-uncased‘.
今天在跑一个模型的时候出现该报错,完整报错为: OSError: Cant load tokenizer for bert-base-uncased. If you were trying to load it from https://huggingface.co/models, make sure you dont have a local directory with the same name. Otherwis…...
陶陶摘苹果C++
题目: 代码: #include<iostream> using namespace std; int main(){//一、分析问题//已知:10 个苹果到地面的高度a[10],陶陶把手伸直的时候能够达到的最大高度height//未知:陶陶能够摘到的苹果的数目sum。//关系ÿ…...
STM32F1 引脚重映射功能
STM32 端口引脚重映射 文章目录 STM32 端口引脚重映射前言1、查阅芯片数据手册1.1 串口引脚重映射描述 2、代码部分2.1 核心代码部分 3、实验现象4、总结 前言 在写程序时遇到想要的端口功能,而这个引脚又被其它的功能占用了无法删除掉或直接使用,这种情…...
c语言的各类输出函数(带完善更新)
printf double x; x 218.82631; printf("%-6.2e\n", x);printf(“%-6.2e\n”, x);使用printf函数以指定的格式输出x的值。"%-6.2e"是格式化字符串,其中: %e表示以科学计数法的形式输出浮点数。 6表示输出的总宽度为6个字符&#…...
【linux温故】CFS调度
写在前面 网上关于CFS 调度器的文章多如牛毛,没必要自己写。很多文章写的都非常好。 很多文章里,关键的技术点,都是一样的,只是各个文章说法不一样。 掌握了核心的,关键的,其他的,如果工作中…...
计算机网络之一
目录 1.因特网概述 1.1网络、互连网(互联网)和因特网 1.2.因特网发展的三个阶段 1.3基于ISP的三层架构的因特网 1.4.因特网的组成 2.三种交换方式 2.1电路交换 2.2分组交换 1.因特网概述 1.1网络、互连网(互联网)和因特网…...
从一到无穷大 #23 《流计算系统图解》书评
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 文章目录 引言内容总结 引言 春节假期回到家里断然是不会有看纸质书的时间的。造化弄人&#…...
华为问界M9:领跑未来智能交通的自动驾驶黑科技
华为问界M9是一款高端电动汽车,其自动驾驶技术是该车型的重要卖点之一。华为在问界M9上采用了多种传感器和高级算法,实现了在不同场景下的自动驾驶功能,包括自动泊车、自适应巡航、车道保持、自动变道等。 华为问界M9的自动驾驶技术惊艳之处…...
Java图形化界面编程——弹球游戏 笔记
Java也可用于开发一些动画。所谓动画,就是间隔一定的时间(通常小于0 . 1秒 )重新绘制新的图像,两次绘制的图像之间差异较小,肉眼看起来就成了所谓的动画 。 为了实现间隔一定的时间就重新调用组件的 repaint()方法,可以借助于…...
浅谈人工智能之深度学习~
目录 前言:深度学习的进展 一:深度学习的基本原理和算法 二:深度学习的应用实例 三:深度学习的挑战和未来发展方向 四:深度学习与机器学习的关系 五:深度学习与人类的智能交互 悟已往之不谏࿰…...
【复现】大华 DSS SQL 注入漏洞_46
目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一: 四.修复建议: 五. 搜索语法: 六.免责声明 一.概述 大华DSS是大华的大型监控管理应用平台,支持几乎所有涉及监控等方面的操作,支持多级跨平台联网等操作。 可…...
Python 中的断点类型详解
前言 在 Python 中,断点是一种在代码中设置的标记,用于在程序执行过程中停止或中断程序的执行,以便调试和查看程序的内部状态。断点是调试工具的关键组成部分,能够帮助开发者定位和解决代码中的错误。本文将详细介绍 Python 中的…...
一步步建立一个C#项目(连续读取S7-1200PLC数据)
这篇博客作为C#的基础系列,和大家分享如何一步步建立一个C#项目完成对S7-1200PLC数据的连续读取。首先创建一个窗体应用。 1、窗体应用 2、配置存储位置 3、选择框架 拖拽一个Button,可以选择视图菜单---工具箱 4、工具箱 拖拽Lable控件和TextBook控件 5、拖拽控件 接下来…...
Hive窗口函数详解
一、 窗口函数知识点 1.1 窗户函数的定义 窗口函数可以拆分为【窗口函数】。窗口函数官网指路: LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20Windowing…...
车载电子电器架构 —— 电子电气系统功能开发
车载电子电器架构 —— 电子电气系统功能开发 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠自己,四海皆…...
LeetCode--代码详解 7.整数反转
7.整数反转 题目 给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)。 示例 …...
《统计学简易速速上手小册》第6章:多变量数据分析(2024 最新版)
文章目录 6.1 主成分分析(PCA)6.1.1 基础知识6.1.2 主要案例:客户细分6.1.3 拓展案例 1:面部识别6.1.4 拓展案例 2:基因数据分析 6.2 聚类分析6.2.1 基础知识6.2.2 主要案例:市场细分6.2.3 拓展案例 1&…...
创新S3存储桶检索:Langchain社区S3加载器搭载OpenAI API
在瞬息万变的数据存储和处理领域,将高效的云存储解决方案与先进的 AI 功能相结合,为处理大量数据提供了一种变革性的方法。本文演示了使用 MinIO、Langchain 和 OpenAI 的 GPT-3.5 模型的实际实现,重点总结了存储在 MinIO 存储桶中的文档。 …...
【Linux技术宝典】Linux入门:揭开Linux的神秘面纱
文章目录 官网Linux 环境的搭建方式一、什么是Linux?二、Linux的起源与发展三、Linux的核心组件四、Linux企业应用现状五、Linux的发行版本六、为什么选择Linux?七、总结 Linux,一个在全球范围内广泛应用的开源操作系统,近年来越来…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
