Matplotlib核心:掌握Figure与Axes
详细介绍Figure和Axes(基于Matplotlib)
🌵文章目录🌵
- 🌳引言🌳
- 🌳 一、Figure(图形)🌳
- 🍁1. 创建Figure🍁
- 🍁2. 添加Axes🍁
- 🌳二、Axes(坐标轴)🌳
- 🍁1. 创建Axes🍁
- 🍁2. 绘制图表🍁
- 🍁3. 设置Axes属性🍁
- 🌳三、Figure和Axes的区别与联系🌳
- 🌳四、进阶用法与技巧🌳
- 🍁1. 多子图布局🍁
- 🍁2. 共享坐标轴🍁
- 🍁3. 保存和导出图表🍁
- 🌳五、总结与展望🌳
- 🌳结尾🌳
🌳引言🌳
在数据分析和可视化领域,Python的Matplotlib库因其强大的功能和广泛的应用而备受推崇。它为用户提供了创建多种类型图表的能力,如折线图、柱状图、散点图等,这些图表对于数据理解和展示至关重要。在Matplotlib库中,Figure和Axes是两个核心概念,它们共同构成了绘图的基础框架。本文将详细解读这两个概念,并探讨它们在Matplotlib中的实际应用,帮助读者更好地掌握数据可视化的关键要素。
🌳 一、Figure(图形)🌳
Figure在Matplotlib中代表了一个完整的图表,它包含了所有的绘图元素,如Axes、标题、图例等。我们可以将Figure看作是一个容器,其中包含了用于绘制图表的所有元素。
🍁1. 创建Figure🍁
在Matplotlib中,我们可以使用plt.figure()
函数来创建一个新的Figure对象。例如:
import matplotlib.pyplot as pltfig = plt.figure()
这将创建一个默认的Figure对象。我们还可以通过传递参数来自定义Figure的大小、DPI等属性。例如:
fig = plt.figure(figsize=(10, 5), dpi=100)
这将创建一个宽度为10英寸、高度为5英寸、DPI为100的Figure对象。
🍁2. 添加Axes🍁
一旦我们创建了Figure对象,就可以向其添加Axes对象。Axes代表了一个坐标轴系统,它包含了数据、坐标轴标签、标题等。我们可以使用add_subplot()
方法来向Figure中添加Axes。例如:
ax = fig.add_subplot(111)
这将在Figure中添加一个1x1的网格中的第一个子图。参数111
表示网格的行数、列数和子图的索引。在这个例子中,我们创建了一个单一的Axes对象,占据了整个Figure的空间。
完整代码如下:
import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_subplot(111)
plt.show()
运行结果如下图所示:

🌳二、Axes(坐标轴)🌳
Axes是Matplotlib中的另一个核心概念,它代表了一个坐标轴系统,用于显示数据和进行绘图。每个Axes对象一般都包含了一个X轴和一个Y轴,以及与之关联的数据和标签。
🍁1. 创建Axes🍁
如上所述,我们可以通过向Figure对象添加子图来创建Axes对象。除了使用add_subplot()
方法外,我们还可以使用add_axes()
方法来创建Axes对象,并指定其在Figure中的位置和大小。例如:
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
这将在Figure上创建一个占据了大部分空间的Axes对象。参数[0.1, 0.1, 0.8, 0.8]
的原型是[left, bottom, width, height]
,其中 left
和 bottom
是 Axes
左下角相对于 Figure
边缘的坐标(以小数形式表示,例如 0 是左/底部边缘,1 是右/顶部边缘),width
和 height
是 Axes
的宽度和高度(也是以小数形式表示)。
完整代码如下:
import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.show()
运行结果如下图所示:
🍁2. 绘制图表🍁
一旦我们有了Axes对象,就可以在其上进行绘图操作。Matplotlib提供了丰富的绘图函数,如plot()
、scatter()
、bar()
等,用于在Axes上绘制各种图表。例如,要在Axes上绘制一个简单的折线图,我们可以这样做:
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)
这将在Axes上绘制一个由点(1, 2)
、(2, 3)
、(3, 5)
、(4, 7)
和(5, 11)
组成的折线图。
完整代码如下:
import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)
plt.show()
运行结果如下图所示:
🍁3. 设置Axes属性🍁
除了绘制图表外,我们还可以设置Axes的各种属性,如标题、坐标轴标签、刻度等。Matplotlib提供了丰富的函数来设置这些属性。例如:
ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])
这些函数分别用于设置Axes的标题、X轴标签、Y轴标签、X轴范围和Y轴范围。
完整代码如下:
import matplotlib.pyplot as pltx = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y)
ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])
plt.show()
运行结果如下图所示:
🌳三、Figure和Axes的区别与联系🌳
Figure | Axes | |
---|---|---|
定义 | Figure 代表整个图表窗口或画布,它是一个容器,可以包含多个子图(Axes )。 | Axes 是Figure 中的一个子图,它拥有自己的坐标轴、刻度、标签等,用于绘制具体的图表。 |
作用 | 提供了一个绘制图表的区域,可以容纳一个或多个Axes 。 | 在Figure 中绘制具体的图表,如折线图、柱状图等。 |
数量 | 一个Figure 可以包含多个Axes ,可通过add_subplot 方法添加。 | 一个Figure 中可以有多个Axes ,但每个Axes 都是独立的。 |
属性 | 包含如尺寸、DPI(每英寸的点数)、背景色等属性。 | 包含如坐标轴范围、刻度、标签、标题等属性。 |
层级关系 | Axes 是Figure 的子对象,每个Axes 都是Figure 的一个部分。 | Axes 是Figure 的直接子对象,与Figure 有直接的层级关系。 |
绘制关系 | 负责整体的布局和呈现,是图表的容器。 | 在Figure 的指定位置进行绘制,展示具体的图表内容。 |
联系:
Axes
是Figure
的组成部分,每个Axes
都在Figure
的指定位置进行绘制。Figure
和Axes
共同构成了图表的基本结构,其中Figure
提供了绘制的整体环境,而Axes
则负责具体的图表内容展示。
区别:
Figure
是一个更高级别的概念,它代表了整个图表窗口或画布,而Axes
则是Figure
中的一个具体子图。Figure
主要负责整体的布局和呈现,而Axes
则负责具体的图表绘制和内容展示。- 一个
Figure
可以包含多个Axes
,而每个Axes
都是独立的,拥有自己的坐标轴、刻度、标签等。
🌳四、进阶用法与技巧🌳
🍁1. 多子图布局🍁
Matplotlib允许在一个Figure中创建多个Axes,通过网格布局或自由布局的方式来实现多子图展示。例如,使用subplot2grid
或GridSpec
可以创建复杂的子图布局。
"""
绘制正弦、余弦以及它们的和在一个 2x2 的网格布局中。
"""
import matplotlib.pyplot as plt
import numpy as np # 创建一个 2x2 的网格布局
fig = plt.figure(figsize=(10, 8))
gs = fig.add_gridspec(2, 2) # 在第一行,创建一个跨越两列的 Axes
ax1 = fig.add_subplot(gs[0, :])
# 在第二行,第一列创建一个 Axes
ax2 = fig.add_subplot(gs[1, 0])
# 在第二行,第二列创建一个 Axes
ax3 = fig.add_subplot(gs[1, 1]) # 生成一个从 0 到 2π,包含 100 个点的等差数列
x = np.linspace(0, 2 * np.pi, 100)
# 计算正弦值
y1 = np.sin(x)
# 计算余弦值
y2 = np.cos(x) # 在 ax1 上绘制红色的正弦曲线,并设置标题为 'Sine'
ax1.plot(x, y1, 'r')
ax1.set_title('Sine') # 在 ax2 上绘制蓝色的余弦曲线,并设置标题为 'Cosine'
ax2.plot(x, y2, 'b')
ax2.set_title('Cosine') # 在 ax3 上绘制绿色的正弦和余弦的和的曲线,并设置标题为 'Sine + Cosine'
ax3.plot(x, y1 + y2, 'g')
ax3.set_title('Sine + Cosine') # 显示图形
plt.show()
运行结果如下图所示:
🍁2. 共享坐标轴🍁
有时我们可能希望多个图表共享同一个X轴或Y轴。Matplotlib提供了sharex
和sharey
参数来实现这一功能。
"""
绘制正弦和余弦函数图像
"""
import matplotlib.pyplot as plt
import numpy as np# 生成一个从0到2π包含100个点的等差数列
x = np.linspace(0, 2 * np.pi, 100)# 计算正弦和余弦值
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个2行1列的子图布局,共享x轴
fig, axs = plt.subplots(2, 1, sharex=True)# 在第一个子图上绘制正弦函数图像,并设置y轴标签为'Sine'
axs[0].plot(x, y1)
axs[0].set_ylabel('Sine')# 在第二个子图上绘制余弦函数图像,并设置y轴标签为'Cosine'
axs[1].plot(x, y2)
axs[1].set_ylabel('Cosine')# 调整子图之间的间距
fig.tight_layout()# 显示图像
plt.show()
运行结果如下图所示:
🍁3. 保存和导出图表🍁
创建好图表后,我们可以使用savefig
方法将其保存为图片文件,支持多种格式如PNG、PDF、SVG等。
plt.savefig('my_plot.png') # 保存为PNG图片
🌳五、总结与展望🌳
通过本文的详细介绍,我们对Matplotlib中的Figure和Axes有了更加深入的理解。从基础的创建和设置,到进阶的多子图布局,Matplotlib提供了丰富的功能和灵活的接口,使得数据可视化变得简单而高效。未来,随着数据科学和可视化技术的不断发展,我们期待Matplotlib能够继续带来更多创新和便利的功能。
希望本文能够帮助读者更好地掌握Matplotlib中的Figure和Axes,并在实际的数据分析和可视化工作中发挥它们的强大作用。
🌳结尾🌳
亲爱的读者,首先感谢您抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见💬。
俗话说,当局者迷,旁观者清。您的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果博文给您带来了些许帮助,那么,希望您能为我们点个免费的赞👍👍/收藏👇👇,您的支持和鼓励👏👏是我们持续创作✍️✍️的动力。
我们会持续努力创作✍️✍️,并不断优化博文质量👨💻👨💻,只为给您带来更佳的阅读体验。
如果您有任何疑问或建议,请随时在评论区留言,我们将竭诚为你解答~
愿我们共同成长🌱🌳,共享智慧的果实🍎🍏!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
相关文章:

Matplotlib核心:掌握Figure与Axes
详细介绍Figure和Axes(基于Matplotlib) 🌵文章目录🌵 🌳引言🌳🌳 一、Figure(图形)🌳🍁1. 创建Figure🍁🍁2. 添加Axes&am…...

问题:A注册会计师必须在期中实施实质性程序的情形是()。 #学习方法#其他
问题:A注册会计师必须在期中实施实质性程序的情形是()。 A.甲公司整体控制环境不佳 B.将期中实质性程序所获证据与期末数据进行比较 C.评估的认定层次重大错报风险很高 D.没有把握通过在期中…...

C#系列-C#EF框架返回单行记录(24)
在C#中,使用Entity Framework (EF)框架时,如果你想要执行一个查询并返回单行记录,你可以使用SingleOrDefault、FirstOrDefault、Single或First方法。这些方法适用于DbSet<T>对象,它们可以执行查询并返回单个实体或默认值&am…...

【PyTorch】张量(Tensor)的生成
PyTorch深度学习总结 第一章 Pytorch中张量(Tensor)的生成 文章目录 PyTorch深度学习总结一、什么是PyTorch?二、张量(Tensor)1、张量的数据类型2、张量生成和信息获取 总结 一、什么是PyTorch? PyTorch是一个开源的深度学习框架,基于Python…...

【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-Viterbi译码原理
目录 一、引言 二、Viterbi译码的基本原理 2.1 卷积码与网格图 2.2 Viterbi算法的核心思想 2.3 路径度量与状态转移 三、Viterbi译码算法工作原理详解 3.1 算法流程 3.2 关键步骤 3.3 译码算法举例 3.4 性能特点 四、Viterbi译码的应用场景 4.1 移动通信系统 4.2 卫…...

矩阵在计算机图像处理中的应用
矩阵在计算机图像处理中是非常核心的概念,因为它们为表示和操作图像数据提供了一种非常方便和强大的方式。以下是矩阵在计算机图像处理中的一些关键作用: 图像表示:在计算机中,图像通常被表示为像素矩阵,也就是二维数组…...

Java实现教学资源共享平台 JAVA+Vue+SpringBoot+MySQL
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课程资源模块2.4 课程作业模块2.5 课程评价模块 三、系统设计3.1 用例设计3.2 类图设计3.3 数据库设计3.3.1 课程档案表3.3.2 课程资源表3.3.3 课程作业表3.3.4 课程评价表 四、系统展…...

Spring Boot(六十五):使用 ant.jar 执行 SQL 脚本文件
ant用处,主要用在编译java文件,打包,部署。打包:jar,war,ear包等。ant在项目中有很重要的作用。今天我们讲解它的另一个作用:执行 SQL 脚本文件。 1 引入依赖 <dependency><groupId>org.apache.ant</groupId><artifactId>ant</artifactId&g…...

161基于matlab的快速谱峭度方法
基于matlab的快速谱峭度方法,选择信号峭度最大的频段进行滤波,对滤波好信号进行包络谱分析。输出快速谱峭度及包络谱结果。程序已调通,可直接运行。 161 信号处理 快速谱峭度 包络谱分析 (xiaohongshu.com)...

CTFshow-WEB入门-信息搜集
web1(查看注释1) wp 右键查看源代码即可找到flag web2(查看注释2) wp 【CtrlU】快捷键查看源代码即可找到flag web3(抓包与重发包) wp 抓包后重新发包,在响应包中找到flag web4(robo…...

django密码管理器(创建项目)
目录 创建项目 安装django 创建项目(django-admin) 创建管理员用户 创建数据库 创建项目 新建一个项目文件夹,如"密码管理器" 安装django 要先安装pip,pip安装地址:pypi.org、pypi.python.org、cheeseshop.python.org pip install django 创建项…...

Centos7之Oracle12c安装与远程连接配置
Centos7之Oracle12c安装与远程连接配置 文章目录 Centos7之Oracle12c安装与远程连接配置1.Oracle官网2. Centos7中安装Oracle12c(12.2.0.1.0)2.1 Introduction (介绍)2.2 Prerequisites(先决条件)2.3 Installation Steps(安装步骤)2.4 Oracle Installer Screens(Oracle安装程序…...

CVE-2022-25578 漏洞复现
CVE-2022-25578 路由/admin/admin.php是后台,登录账号和密码默认是admin、tao,选择文件管理。 是否还记得文件上传中的.htaccess配置文件绕过发,在这个文件中加入一句AddType application/x-httpd-php .jpg,将所有jpg文件当作php…...

Ubuntu22.04安装黑屏(进入U盘安装引导时 和 安装完成后)
一:进入U盘安转引导时黑屏 问题描述:选择’try or install ubuntu’,开始安装,出现黑屏。 解决方法:(可行) 安装时,先选择" try or install ubuntu", 此时不要按enter&a…...

一、DataX简介
DataX简介 一、什么是DataX二、DataX设计三、支持的数据源四、框架设计五、运行原理六、DataX和Sqoop对比 一、什么是DataX DataX是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、OD…...

直播app开发,技术驱动的实时互动新纪元
随着互联网技术的快速发展,直播已成为我们日常生活的重要组成部分。从娱乐、教育到商业活动,直播的广泛应用正在改变着我们的生活和工作方式。在这一变革中,直播开发扮演着至关重要的角色。本文将探讨直播开发的核心理念、技术挑战以及未来的…...

Apache POI的介绍以及使用示例
Apache POI 是一套开源的 Java 库,用于读取和写入 Microsoft Office 文档格式,如 Excel、Word 和 PowerPoint。Spring Boot 是一个流行的 Java 应用程序框架,用于简化 Spring 应用的开发和部署。将 Apache POI 与 Spring Boot 结合使用&#…...

npm config set registry https://registry.npm.taobao.org 这个设置了默认的镜像源之后如何恢复默认的镜像源
要恢复npm默认的镜像源,你可以使用以下命令将registry设置回npm的官方源: npm config set registry https://registry.npmjs.org/这个命令会修改你的全局npm配置,将包的下载源改回npm官方的源。这样做之后,任何后续的npm install…...

算法沉淀——位运算(leetcode真题剖析)
算法沉淀——位运算 常用位运算总结1.基础位运算2.确定一个数中第x位是0还是13.将一个数的第x位改成14.将一个数的第x位改成05.位图6.提取一个数最右边的17.删掉一个数最右边的18.异或运算9.基础例题 力扣题目讲解01.面试题 01.01. 判定字符是否唯一02.丢失的数字03.两整数之和…...

React18原理: 再聊Fiber架构下的时间分片
时间分片 react的任务可以被打断,其实就是基于时间分片的人眼最高能识别的帧数不超过30帧,电影的帧数差不多是在24浏览器的帧率一般来说是60帧,也就是每秒60个画面, 平均一个画面大概是16.5毫秒左右浏览器正常的工作流程是运算渲染ÿ…...

【玩转408数据结构】线性表——线性表的顺序表示(顺序表)
知识回顾 通过前文,我们了解到线性表是具有相同数据类型的有限个数据元素序列;并且,线性表只是一种逻辑结构,其不同存储形式所展现出的也略有不同,那么今天我们来了解一下线性表的顺序存储——顺序表。 顺序表的定义 …...

图像处理之《黑盒扰动的可逆噪声流鲁棒水印》论文阅读
一、文章摘要 近年来,基于深度学习的数字水印框架得到了广泛的研究。现有的方法大多采用基于“编码器-噪声层-解码器”的架构,其中嵌入和提取过程分别由编码器和解码器完成。然而,这种框架的一个潜在缺点是编码器和解码器可能不能很好地耦合…...

一个Vivado仿真问题的debug
我最近在看Synopsys的MPHY仿真代码,想以此为参考写个能实现PWM-G1功能的MPHY,并应用于ProFPGA原型验证平台。我从中抽取了一部分代码,用Vivado自带的仿真器进行仿真,然后就遇到了一个莫名其妙的问题,谨以此文作为debug…...

C#阿里云消息列队推送消息
推送消息到队列 IMNS nativeclient new Aliyun.MNS.MNSClient(accessKeyId, accessKeySecret, endpoint, _stsToken);var nativeSend nativeclient.GetNativeTopic("SMQ");nativeSend.PublishMessage("推送消息内容"); 需要引用Aliyun.MNS.dll 下载地址…...

Stable Diffusion 模型下载:majicMIX sombre 麦橘唯美
本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十...

WindowsLinuxmeterepreter渗透命令回顾
最近小编发现在学红队的时候总会忘记一些命令(基础的),导致整天红温,于是今天就来偷个懒记一下(一起回顾一下) 1.Linux 1.查看当前按目录 pwd2.查看文件内容 cat filename.txt3.cd 家族 cd ..|| cd ../…...

KingSCADA实现按钮点击效果
哈喽,你好啊,我是雷工! 在做SCADA项目的时候,按钮是不可缺少的功能,但软件自带的按钮太丑,已经无法满足现如今客户对界面美观度的要求。 这时候就需要UI小姐姐设计美观大气的SCADA界面,但UI设计…...

Python编程-二万字浅谈装饰器原理与装饰器设计模式和函数式编程案例讲解
Python编程-浅析装饰器原理与装饰器设计模式和函数式编程案例讲解 本文制作时基于Python3.11.8与Python3.12.1,存在谬误,请联系修改,希望对你有所帮助 什么是函数式编程 函数式编程(Functional Programming)是一种编程…...

基于Zigbee的智能温室大棚系统(附详细使用教程+完整代码+原理图+完整课设报告)
🎊项目专栏:【Zigbee课程设计系列文章】(附详细使用教程+完整代码+原理图+完整课设报告) 前言 👑由于无线传感器网络(也即是Zigbee)作为🌐物联网工程的一门必修专业课,具有很强的实用性,因此很多院校都开设了zigbee的实训课程;👑同时最近很多使用了我的单片机课…...

【Web】Redis未授权访问漏洞学习笔记
目录 简介 靶机配置 Redis持久化 Redis动态修改配置 webshell 反弹shell Redis写入反弹shell任务 加固方案 简介 Redis(Remote Dictionary Server 远程字典服务器)是一个开源的内存数据库,也被称为数据结构服务器,它支持…...