当前位置: 首页 > news >正文

CSP-动态规划-最长公共子序列(LCS)

一、动态规划

动态规划(Dynamic Programming,简称DP)主要用于求解可以被分解为相似子问题的复杂问题,特别是在优化问题上表现出色,如最短路径、最大子数组和、编辑距离等。动态规划的核心思想是将原问题分解为较小的子问题,通过解决这些子问题,并将结果存储起来(通常是在一个数组或者哈希表中),以避免重复计算,从而提高效率。

动态规划问题的解决通常遵循以下几个步骤:

  1. 暴力穷举所有答案。
  2. 画出递归树,尝试编写递归函数求解。
  3. 若遍历中存在大量重复计算,使用哈希表缓存数据,之后遍历到相同节点就直接查表。
  4. 表示整个计算过程,观察公式求解顺序,改写成更加高效的迭代形式。

二、动态规划的例子

1.斐波那契数列

2.背包问题

3. 最长公共子序列(LCS)

  • 给定一个无序数组nums=[1,5,2,4,3],找出其中最长的递增的子序列,比如1-2-41-2-3。将问题简化,要求算法只返回最长序列的长度(3)

(1) 暴力枚举

  • 把每个子序列都“找个遍”,并且在遍历过程中实时记录当前子序列的长度
    图片描述

(2) 递归解决方案

  1. 递归函数 L:用于计算以特定元素结尾的最长递增子序列的长度;

    • 基础情形:如果当前考虑的元素是数组的最后一个元素,那么以它结尾的最长递增子序列的长度为 1,因为它自身就构成了一个长度为 1 的递增子序列。
    • 递归步骤:对于非最后一个元素,函数会遍历当前元素之后的所有元素,寻找一个值比当前元素大的元素,这意味着可以形成一个递增的序列。对于每一个这样的元素,函数会递归地计算以那个元素为结尾的最长递增子序列的长度,并将其与当前最大长度比较,更新当前最大长度。这个过程会重复直到数组结束。
    • 返回值:函数最终返回以当前元素结尾的最长递增子序列的长度。
  2. 函数 lengthOfLIS:作用是找到整个数组的最长递增子序列的长度。

    • 遍历给定数组的每个元素,对每个元素调用递归函数 L,计算以该元素为结尾的最长递增子序列的长度。
    • 比较并更新 max_len 为当前找到的最长递增子序列的长度。
    • 遍历完成后,返回 max_len 作为最终结果。
#include <iostream>
#include <vector>
using namespace std;// 计算以 nums[i] 结尾的最长递增子序列的长度
int L(const vector<int>& nums, int i) {if (i == nums.size() - 1) { // 如果是最后一个元素return 1; // 最长递增子序列长度为1}int max_len = 1; // 初始化最大长度为1for (int j = i + 1; j < nums.size(); ++j) {if (nums[j] > nums[i]) { // 如果找到一个递增的元素// 递归计算以 nums[j] 结尾的最长递增子序列长度,并加1(加上nums[i])// 然后与当前的最大长度取较大值max_len = max(max_len, L(nums, j) + 1);}}return max_len; // 返回以 nums[i] 结尾的最长递增子序列的长度
}// 计算给定序列的最长递增子序列长度
int lengthOfLIS(const vector<int>& nums) {int max_len = 0; // 初始化全局最大长度为0for (int i = 0; i < nums.size(); ++i) {// 遍历每个元素,计算以每个元素为起点的最长递增子序列的长度// 然后取所有长度中的最大值max_len = max(max_len, L(nums, i));}return max_len; // 返回最长递增子序列的长度
}int main() {vector<int> nums = {1, 5, 2, 4, 3}; cout << lengthOfLIS(nums) << endl; return 0;
}

(3) 递归的问题

  • 直接递归的方法在时间复杂度上是非常高的,因为它会重复计算很多子问题的解。
  • 比如,在遍历子序列1-2-4时就已经计算过“L(4)”,后面遍历1,4时又重复计算了一次。

(4) 递归的优化:动态规划

  • 为了避免递归中出现的重复计算,可以将第一次计算时的结果保存,之后再当遍历到相同的节点我们就不在需要重复计算,直接返回之前的结果即可。

  • 在这个版本中,L 函数中添加了一个 unordered_map (哈希表)类型的备忘录 memo,用于存储已经计算过的子问题的解。在递归的过程中,先检查备忘录是否已经包含了当前子问题的解,如果有则直接返回保存的结果,避免了重复计算。这样能够显著提高程序的性能。

#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;// 使用备忘录的递归方式计算以 nums[i] 结尾的最长递增子序列的长度
int L(const vector<int>& nums, int i, unordered_map<int, int>& memo) {if (i == nums.size() - 1) {return 1;}if (memo.find(i) != memo.end()) {return memo[i]; // 如果已经计算过,直接返回保存的结果}int max_len = 1;for (int j = i + 1; j < nums.size(); ++j) {if (nums[j] > nums[i]) {max_len = max(max_len, L(nums, j, memo) + 1);}}memo[i] = max_len; // 将结果保存到备忘录中return max_len;
}// 计算给定序列的最长递增子序列长度
int lengthOfLIS(const vector<int>& nums) {int max_len = 0;unordered_map<int, int> memo; // 使用unordered_map作为备忘录for (int i = 0; i < nums.size(); ++i) {max_len = max(max_len, L(nums, i, memo));}return max_len;
}int main() {vector<int> nums = {1, 5, 2, 4, 3};cout << lengthOfLIS(nums) << endl;return 0;
}

(5) 递归转非递归

  • 从后往前依次计算,即可推算出所有答案(数学归纳)
    图片描述

  • dp 数组:用于存储以每个元素结尾的最长递增子序列的长度。

  • 双重循环:外层循环遍历每个元素,内层循环遍历当前元素之前的元素,更新以当前元素结尾的最长递增子序列的长度。

  • max_element 函数:返回 dp 数组中的最大值,即整个数组中最长递增子序列的长度。

#include <iostream>
#include <vector>
using namespace std;int lengthOfLIS(const vector<int>& nums) {int n = nums.size();if (n == 0) return 0; // 处理空数组的情况vector<int> dp(n, 1); // 初始化dp数组,每个元素代表以对应位置元素结尾的最长递增子序列的长度for (int i = 1; i < n; ++i) {for (int j = 0; j < i; ++j) {if (nums[i] > nums[j]) {dp[i] = max(dp[i], dp[j] + 1); // 更新以nums[i]结尾的最长递增子序列长度}}}return *max_element(dp.begin(), dp.end()); // 返回dp数组中的最大值,即最长递增子序列的长度
}int main() {vector<int> nums = {1, 5, 2, 4, 3}; // 定义一个序列cout << lengthOfLIS(nums) << endl; // 输出最长递增子序列的长度return 0;
}

相关文章:

CSP-动态规划-最长公共子序列(LCS)

一、动态规划 动态规划&#xff08;Dynamic Programming&#xff0c;简称DP&#xff09;主要用于求解可以被分解为相似子问题的复杂问题&#xff0c;特别是在优化问题上表现出色&#xff0c;如最短路径、最大子数组和、编辑距离等。动态规划的核心思想是将原问题分解为较小的子…...

安装nodejs2011并配置npm仓库

1. 安装nodejs 选择2011版本下载 在安装目录(个人情况)下 D:\Program Files\nodejs2011创建2个文件夹&#xff1a; node_global &#xff08;依赖库&#xff09; node_cache &#xff08;缓存&#xff09; 然后在当前目录下cmd进入dos窗口&#xff0c;执行&#xff1a; npm c…...

排序C++代码(已更:快速排序,归并排序)

一、快速排序 #include<iostream> using namespace std;//设定三个数组&#xff0c;判断排序算法代码的正确性 int a[100]{3,4,2,6,9,7,1,0,1,2,3,3,5,6,7,8,3,4,5}; int b[100]{1,5,3,4}; int c[100]{7,8,9,1,2,3};void quickSort(int* num,int l,int r){if(l>r) re…...

CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

正文共&#xff1a;1333 字 21 图&#xff0c;预估阅读时间&#xff1a;2 分钟 上次我们在Windows上尝试用Tesla M4配置深度学习环境&#xff08;TensorFlow识别GPU难道就这么难吗&#xff1f;还是我的GPU有问题&#xff1f;&#xff09;&#xff0c;但是失败了。考虑到Windows…...

Java设计模式——策略

前言 策略模式是平时Java开发中常用的一种&#xff0c;虽然已有很多讲解设计模式的文章&#xff0c;但是这里还是写篇文章来从自己理解的角度讲解一下。 使用场景 我们不妨进行场景假设&#xff0c;要对我们的软件进行授权管理&#xff1a;在启动我们的软件之前先要校验是否…...

线性代数的本质 1 向量

向量是线性代数中最为基础的概念。 何为向量&#xff1f; 从物理上看&#xff0c; 向量就是既有大小又有方向的量&#xff0c;只要这两者一定&#xff0c;就可以在空间中随便移动。 从计算机应用的角度看&#xff0c;向量和列表很接近&#xff0c;可以用来描述某对象的几个不同…...

基于JAVA的贫困地区人口信息管理系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 人口信息管理模块2.2 精准扶贫管理模块2.3 特殊群体管理模块2.4 案件信息管理模块2.5 物资补助模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 人口表3.2.2 扶贫表3.2.3 特殊群体表3.2.4 案件表3.2.5 物资补助表 四…...

【后端高频面试题--Mybatis篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;后端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 后端高频面试题--Mybatis篇 什么是Mybatis&#xff1f;Mybatis的优缺点&#xff1f;Mybatis的特点…...

【笔记】Helm-5 Chart模板指南-12 .helmignore文件

.helmignore文件 .helmignore文件用来指定您不想包含在您的helm chart中的文件。 如果该文件存在&#xff0c;helm package命令会在打包应用时忽略所有在.helmignore文件中匹配的文件。 有助于避免不需要的或敏感文件及目录添加到您的helm chart中。 .helmignore文件支持Uni…...

【MySQL】表的增删改查(基础)

MySQL表的增删改查&#xff08;基础&#xff09; 1. CRUD2. 新增&#xff08;Create&#xff09;2.1 单行数据全列插入2.2 多行数据 指定列插入 3. 查询&#xff08;Retrieve&#xff09;3.1 全列查询3.2 指定列查询3.3 查询字段为表达式3.4 别名3.5 去重&#xff1a;DISTINCT…...

Android矩阵Matrix动画缩放Bitmap移动手指触点到ImageView中心位置,Kotlin

Android矩阵Matrix动画缩放Bitmap移动手指触点到ImageView中心位置&#xff0c;Kotlin 借鉴 Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心&#xff0c;Kotlin&#xff08;2&#xff09;-CSDN博客 在此基础上实现手指在屏幕上点击后&…...

C语言:表达式求值

引言&#xff1a;在笔试中&#xff0c;有一类的题目&#xff0c;题目给出代码&#xff0c;要求分析得出输出结果。这类题目更加考察我们对于运算顺序和运算类型转换的理解。文章介绍了隐式类型转换和操作符注意点&#xff0c;希望增加读者对于表达式求值的理解。 1.隐式类型转…...

GO 的 Web 开发系列(五)—— 使用 Swagger 生成一份好看的接口文档

经过前面的文章&#xff0c;已经完成了 Web 系统基础功能的搭建&#xff0c;也实现了 API 接口、HTML 模板渲染等功能。接下来要做的就是使用 Swagger 工具&#xff0c;为这些 Api 接口生成一份好看的接口文档。 一、写注释 注释是 Swagger 的灵魂&#xff0c;Swagger 是通过…...

【极数系列】Flink集成KafkaSink 实时输出数据(11)

文章目录 01 引言02 连接器依赖2.1 kafka连接器依赖2.2 base基础依赖 03 使用方法04 序列化器05 指标监控06 项目源码实战6.1 包结构6.2 pom.xml依赖6.3 配置文件6.4 创建sink作业 01 引言 KafkaSink 可将数据流写入一个或多个 Kafka topic 实战源码地址,一键下载可用&#xf…...

我为什么选择Xamarin开发ios app安卓app

临岁之寒简书作者,转载 Xamarin是一项跨平台开发技术&#xff0c;之前是收费的&#xff0c;而且据说收费不菲&#xff0c;所以使用的人数比较少&#xff0c;在国内几乎无人问津。后来Xamarin被微软收购&#xff0c;现已免费开放&#xff0c;相信今后国内的使用人群会大幅地增长…...

安全基础~通用漏洞4

文章目录 知识补充XSS跨站脚本**原理****攻击类型**XSS-后台植入Cookie&表单劫持XSS-Flash钓鱼配合MSF捆绑上线ctfshow XSS靶场练习 知识补充 SQL注入小迪讲解 文件上传小迪讲解 文件上传中间件解析 XSS跨站脚本 xss平台&#xff1a; https://xss.pt/ 原理 恶意攻击者…...

2024/2/12 图的基础知识 2

目录 查找文献 P5318 【深基18.例3】查找文献 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 有向图的拓扑序列 848. 有向图的拓扑序列 - AcWing题库 最大食物链计数 P4017 最大食物链计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 查找文献 P5318 【深基18.例3】…...

无人机飞行原理,多旋翼无人机飞行原理详解

多旋翼无人机升空飞行的首要条件是动力&#xff0c;有了动力才能驱动旋粪旋转&#xff0c;才能产生克服重力所必需的升力。使旋翼产生升力&#xff0c;进而推动多旋翼无人机升空飞行的一套设备装置称为动力装置&#xff0c;包括多旋翼无人机的发动机以及保证发动机正常工作所必…...

docker本地目录挂载

小命令 1、查看容器详情 docker inspect 容器名称 还是以nginx为例&#xff0c;上篇文章我们制作了nginx静态目录的数据卷&#xff0c;此时查看nginx容器时会展示出来&#xff08;docker inspect nginx 展示信息太多&#xff0c;这里只截图数据卷挂载信息&#xff09;&#…...

使用C++从零开始,自己写一个MiniWeb

第一步&#xff1a;新建项目 1、打开VS点击创建新项目 2、选择空项目并点下一步&#xff08;切记不能选错项目类型&#xff09; 3、填写项目名称和路径&#xff0c;点击创建即可 新建好后项目是这样的比较干净 4、右击源文件&#xff0c;点击添加&#xff0c;新建http.cpp文件…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...