多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
目录
- 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果

基本介绍
1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)
RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量时序预测;
4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式资源处下载Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测。
% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)% requires 2 arguments% p_train: data matrix% model: generated via regRF_train functionif nargin ~= 2error('need atleast 2 parameters, X matrix and model');endY_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);if ~isempty(find(model.coef, 1)) % for bias corrY_hat = model.coef(1) + model.coef(2) * Y_hat;endclear mexRF_predict
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:
多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测 目录 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预…...
vue3-内置组件-Suspense
Suspense (实验性功能) <Suspense> 是一项实验性功能。它不一定会最终成为稳定功能,并且在稳定之前相关 API 也可能会发生变化。 <Suspense> 是一个内置组件,用来在组件树中协调对异步依赖的处理。它让我们可以在组件树上层等待下层的多个嵌…...
Rust入门:如何在windows + vscode中关闭程序codelldb.exe
在windows中用vscode单步调试rust程序的时候,发现无论是按下stop键,还是运行完程序,调试器codelldb.exe一直霸占着主程序不退出,如果此时对代码进行修改,后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…...
git错误整理
remote: Support for password authentication was removed on August 13, 2021. 参考:这篇即可 GnuTLS recv error (-110): The TLS connection was non-properly terminated. 执行下面的指令: git config --global http.sslVerify false...
跟着cherno手搓游戏引擎【22】CameraController、Resize
前置: YOTO.h: #pragma once//用于YOTO APP#include "YOTO/Application.h" #include"YOTO/Layer.h" #include "YOTO/Log.h"#include"YOTO/Core/Timestep.h"#include"YOTO/Input.h" #include"YOTO/KeyCod…...
微信小程序(四十二)wechat-http拦截器
注释很详细,直接上代码 上一篇 新增内容: 1.wechat-http请求的封装 2.wechat-http请求的拦截器的用法演示 源码: utils/http.js import http from "wechat-http"//设置全局默认请求地址 http.baseURL "https://live-api.ith…...
tomcat部署zrlog
1.下载zrlog包,并添加到虚拟机中 1)进入/opt/apache-tomcat-8.5.90/webapps目录 cd /opt/apache-tomcat-8.5.90/webapps2)下载zrlog包 wget http://dl.zrlog.com/release/zrlog-1.7.1-baaecb9-release.war 3)重命名包 mv zrlog-1.7.1-baaecb9-release zrblog 2…...
Ubuntu Desktop 开机数字小键盘
Ubuntu Desktop 开机数字小键盘 1. 开机数字小键盘References 1. 开机数字小键盘 一般情况下,Ubuntu 开机后小键盘区是控制方向键而非数字键,每次开机后若用到数字键都需要按下 NumLock 键。 References [1] Yongqiang Cheng, https://yongqiang.blog…...
树莓派编程基础与硬件控制
1.编程语言 Python 是一种泛用型的编程语言,可以用于大量场景的程序开发中。根据基于谷歌搜 索指数的 PYPL(程序语言流行指数)统计,Python 是 2019 年 2 月全球范围内最为流行 的编程语言 相比传统的 C、Java 等编程语言&#x…...
autojs通过正则表达式获取带有数字的text内容
视频连接 视频连接 参考 参考 var ctextMatches(/\d/).findOne()console.log("当前金币"c.text()) // 获取当前金币UiSelector.textMatches(reg) reg {string} | {Regex} 要满足的正则表达式。 为当前选择器附加控件"text需要满足正则表达式reg"的条件。 …...
Android java基础_类的继承
一.Android Java基础_类的继承 先封装一个persion类,在persion的基础上定义Student类,并基础persion类。 子类能访问父类的成员函数。 class Person {private int age;public void setAge(int age) {if (age < 0 || age > 200)age 0;else {thi…...
nginx stream proxy 模块的ssl连接源码分析
目录 1. 源起2. 分析验证环境的配置3. 源码分析3.1 代理模块的请求入口点分析3.2 发起与上游服务器的连接3.3 连接回调3.4 TCP连接建立成功后为上下游数据透传做准备3.5 TCP连接的ssl上下文初始化3.6 ssl握手成功后的处理3.7 连接数据的收与发1. 源起 我一直来对ssl建立连接的过…...
C#面:Static Nested Class 和 Inner Class 有什么不同
这是两种不同的类嵌套方式。 Static Nested Class : 是一个静态嵌套类,它是在外部类中定义的一个静态类。它可以访问外部类的静态成员和方法,但不能直接访问外部类的非静态成员和方法。静态嵌套类可以独立于外部类实例化,即可以…...
LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】
文章目录 前言LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】题目链接与分类思路 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领…...
java数据结构与算法刷题-----LeetCode151. 反转字符串中的单词
java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 解题思路 这道题,可以理解为,将字符串颠倒…...
《Java 简易速速上手小册》第8章:Java 性能优化(2024 最新版)
文章目录 8.1 性能评估工具 - 你的性能探测仪8.1.1 基础知识8.1.2 重点案例:使用 VisualVM 监控应用性能8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试 8.2 JVM 调优 - 魔法引擎的调校8…...
mysql全国省市县三级联动创表sql(一)
1. 建表sql CREATE TABLE province (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code CHAR ( 6 ) NOT NULL COMMENT 省份编码,name VARCHAR ( 40 ) NOT NULL COMMENT 省份名称 ) COMMENT 省份信息表;CREATE TABLE city (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code …...
go面试题--使用两个goroutine交替打印数字与字母
使用两个goroutine交替打印数字与字母 题目如下: 使用两个goroutine交替打印序列,一个goroutine打印数字,另外一个goroutine打印字母,最终效果如下: 12AB34CD56EF78GH910IZ1112KL1314MN1516OP1718QR1920ST2122UV2324W…...
DolphinScheduler-3.2.0 集群搭建
目录 一、基础环境准备 1.1 组件下载地址 1.2 前置准备工作 二、 DolphinScheduler集群部署 2.1 解压安装包 2.2 配置数据库 2.3 准备 DolphinScheduler 启动环境 2.3.1 配置用户免密及权限 2.3.2 配置机器 SSH 免密登陆 2.3.3 启动 zookeeper集群 2.3.4 修改instal…...
07:Kubectl 命令详解|K8S资源对象管理|K8S集群管理(重难点)
Kubectl 命令详解|K8S资源对象管理|K8S集群管理 kubectl管理命令kubectl get 查询资源常用的排错命令kubectl run 创建容器 POD原理pod的生命周期 k8s资源对象管理资源文件使用资源文件管理对象Pod资源文件deploy资源文件 集群调度的规则扩容与缩减集群更…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
