当前位置: 首页 > news >正文

探讨java系统中全局唯一ID实现方案

为什么需要全局唯一ID

我们这里引用美团 Leaf 的场景介绍:在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一 ID 做标识。此时一个能够生成全局唯一ID 的系统是非常必要的。

UUID

UUID (Universally Unique Identifier),通用唯一识别码的缩写。UUID是由一组32位数的16进制数字所构成,所以UUID理论上的总数为 1632=2128,约等于 3.4 x 10^38。也就是说若每纳秒产生1兆个UUID,要花100亿年才会将所有UUID用完。生成的UUID是由 8-4-4-4-12格式的数据组成,其中32个字符和4个连字符’ - ',一般我们使用的时候会将连字符删除 uuid.toString().replaceAll(“-”,“”)。
UUID的产生方式主要包括以下几种:

  1. 基于时间戳和MAC地址(UUID v1):这种方式结合了主机的网络接口卡MAC地址和当前的日期时间来生成UUID。由于包含了MAC地址,因此这种方式生成的UUID在一定程度上是可以被跟踪的,因为它隐含了生成UUID的设备信息。
  2. 基于随机数(UUID v4):这是目前最常用的UUID生成方式。它完全基于随机数或伪随机数,没有任何可以识别的个人或组织信息,因此是完全匿名的。这也是为什么它被广泛应用于需要高度安全性和隐私保护的场景。
  3. 基于命名空间的UUID(UUID v3、v5):这种方式基于MD5和SHA-1散列算法,通过将特定命名空间的标识符和名字进行散列来生成UUID。这种方法允许UUID基于给定的名字和命名空间来生成,确保不同命名空间下的UUID是唯一的。
  4. 基于硬件的UUID:某些系统可能还会根据其他硬件信息来生成UUID,例如硬盘序列号等。
    java实现的uuid为基于随机数,使用代码:
public static void main(String[] args) {//获取一个版本4根据随机字节数组的UUID。UUID uuid = UUID.randomUUID();System.out.println(uuid.toString().replaceAll("-",""));
}

虽然 UUID 生成方便,本地生成没有网络消耗,但是使用起来也有一些缺点:

  1. 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
  2. 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,暴露使用者的位置。
  3. 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能,可以查阅 Mysql 索引原理 B+树的知识。

使用redis实现

Redis实现分布式唯一ID主要是通过提供像 INCR 和 INCRBY 这样的自增原子命令,由于Redis自身的单线程的特点所以能保证生成的 ID 肯定是唯一有序的。以下代码通过引入jedis来实现:

import redis.clients.jedis.Jedis;public class UniqueIdGenerator {private static final String REDIS_HOST = "localhost";private static final int REDIS_PORT = 6379;private static final String UNIQUE_ID_KEY = "unique_id";public static void main(String[] args) {Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT);long uniqueId = generateUniqueId(jedis);System.out.println("生成的唯一ID: " + uniqueId);jedis.close();}private static long generateUniqueId(Jedis jedis) {return jedis.incr(UNIQUE_ID_KEY);}
}

雪花算法-Snowflake

Snowflake,雪花算法是由Twitter开源的分布式ID生成算法,以划分命名空间的方式将 64-bit位分割成多个部分,每个部分代表不同的含义。而 Java中64bit的整数是Long类型,所以在 Java 中 SnowFlake 算法生成的 ID 就是 long 来存储的。
具体实现步骤如下:

  • 第一位为未使用(符号位表示正数),接下来的41位为毫秒级时间(41位的长度可以使用69年)
  • 然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点)
  • 最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)
    在这里插入图片描述

以下是java实现版本:

public class Snowflake implements Serializable {private static final long serialVersionUID = 1L;/*** 默认的起始时间,为Thu, 04 Nov 2010 01:42:54 GMT*/public static long DEFAULT_TWEPOCH = 1288834974657L;/*** 默认回拨时间,2S*/public static long DEFAULT_TIME_OFFSET = 2000L;private static final long WORKER_ID_BITS = 5L;// 最大支持机器节点数0~31,一共32个@SuppressWarnings({"PointlessBitwiseExpression", "FieldCanBeLocal"})private static final long MAX_WORKER_ID = -1L ^ (-1L << WORKER_ID_BITS);private static final long DATA_CENTER_ID_BITS = 5L;// 最大支持数据中心节点数0~31,一共32个@SuppressWarnings({"PointlessBitwiseExpression", "FieldCanBeLocal"})private static final long MAX_DATA_CENTER_ID = -1L ^ (-1L << DATA_CENTER_ID_BITS);// 序列号12位(表示只允许workId的范围为:0-4095)private static final long SEQUENCE_BITS = 12L;// 机器节点左移12位private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;// 数据中心节点左移17位private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;// 时间毫秒数左移22位private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;// 序列掩码,用于限定序列最大值不能超过4095private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);// 4095/*** 初始化时间点*/private final long twepoch;private final long workerId;private final long dataCenterId;private final boolean useSystemClock;/*** 允许的时钟回拨毫秒数*/private final long timeOffset;/*** 当在低频模式下时,序号始终为0,导致生成ID始终为偶数<br>* 此属性用于限定一个随机上限,在不同毫秒下生成序号时,给定一个随机数,避免偶数问题。<br>* 注意次数必须小于{@link #SEQUENCE_MASK},{@code 0}表示不使用随机数。<br>* 这个上限不包括值本身。*/private final long randomSequenceLimit;/*** 自增序号,当高频模式下时,同一毫秒内生成N个ID,则这个序号在同一毫秒下,自增以避免ID重复。*/private long sequence = 0L;private long lastTimestamp = -1L;/*** 构造,使用自动生成的工作节点ID和数据中心ID*/public Snowflake() {this(IdUtil.getWorkerId(IdUtil.getDataCenterId(MAX_DATA_CENTER_ID), MAX_WORKER_ID));}/*** 构造** @param workerId 终端ID*/public Snowflake(long workerId) {this(workerId, IdUtil.getDataCenterId(MAX_DATA_CENTER_ID));}/*** 构造** @param workerId     终端ID* @param dataCenterId 数据中心ID*/public Snowflake(long workerId, long dataCenterId) {this(workerId, dataCenterId, false);}/*** 构造** @param workerId         终端ID* @param dataCenterId     数据中心ID* @param isUseSystemClock 是否使用{@link SystemClock} 获取当前时间戳*/public Snowflake(long workerId, long dataCenterId, boolean isUseSystemClock) {this(null, workerId, dataCenterId, isUseSystemClock);}/*** @param epochDate        初始化时间起点(null表示默认起始日期),后期修改会导致id重复,如果要修改连workerId dataCenterId,慎用* @param workerId         工作机器节点id* @param dataCenterId     数据中心id* @param isUseSystemClock 是否使用{@link SystemClock} 获取当前时间戳* @since 5.1.3*/public Snowflake(Date epochDate, long workerId, long dataCenterId, boolean isUseSystemClock) {this(epochDate, workerId, dataCenterId, isUseSystemClock, DEFAULT_TIME_OFFSET);}/*** @param epochDate        初始化时间起点(null表示默认起始日期),后期修改会导致id重复,如果要修改连workerId dataCenterId,慎用* @param workerId         工作机器节点id* @param dataCenterId     数据中心id* @param isUseSystemClock 是否使用{@link SystemClock} 获取当前时间戳* @param timeOffset       允许时间回拨的毫秒数* @since 5.8.0*/public Snowflake(Date epochDate, long workerId, long dataCenterId, boolean isUseSystemClock, long timeOffset) {this(epochDate, workerId, dataCenterId, isUseSystemClock, timeOffset, 0);}/*** @param epochDate           初始化时间起点(null表示默认起始日期),后期修改会导致id重复,如果要修改连workerId dataCenterId,慎用* @param workerId            工作机器节点id* @param dataCenterId        数据中心id* @param isUseSystemClock    是否使用{@link SystemClock} 获取当前时间戳* @param timeOffset          允许时间回拨的毫秒数* @param randomSequenceLimit 限定一个随机上限,在不同毫秒下生成序号时,给定一个随机数,避免偶数问题,0表示无随机,上限不包括值本身。* @since 5.8.0*/public Snowflake(Date epochDate, long workerId, long dataCenterId,boolean isUseSystemClock, long timeOffset, long randomSequenceLimit) {this.twepoch = (null != epochDate) ? epochDate.getTime() : DEFAULT_TWEPOCH;this.workerId = Assert.checkBetween(workerId, 0, MAX_WORKER_ID);this.dataCenterId = Assert.checkBetween(dataCenterId, 0, MAX_DATA_CENTER_ID);this.useSystemClock = isUseSystemClock;this.timeOffset = timeOffset;this.randomSequenceLimit = Assert.checkBetween(randomSequenceLimit, 0, SEQUENCE_MASK);}/*** 根据Snowflake的ID,获取机器id** @param id snowflake算法生成的id* @return 所属机器的id*/public long getWorkerId(long id) {return id >> WORKER_ID_SHIFT & ~(-1L << WORKER_ID_BITS);}/*** 根据Snowflake的ID,获取数据中心id** @param id snowflake算法生成的id* @return 所属数据中心*/public long getDataCenterId(long id) {return id >> DATA_CENTER_ID_SHIFT & ~(-1L << DATA_CENTER_ID_BITS);}/*** 根据Snowflake的ID,获取生成时间** @param id snowflake算法生成的id* @return 生成的时间*/public long getGenerateDateTime(long id) {return (id >> TIMESTAMP_LEFT_SHIFT & ~(-1L << 41L)) + twepoch;}/*** 下一个ID** @return ID*/public synchronized long nextId() {long timestamp = genTime();if (timestamp < this.lastTimestamp) {if (this.lastTimestamp - timestamp < timeOffset) {// 容忍指定的回拨,避免NTP校时造成的异常timestamp = lastTimestamp;} else {// 如果服务器时间有问题(时钟后退) 报错。throw new IllegalStateException(StrUtil.format("Clock moved backwards. Refusing to generate id for {}ms", lastTimestamp - timestamp));}}if (timestamp == this.lastTimestamp) {final long sequence = (this.sequence + 1) & SEQUENCE_MASK;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}this.sequence = sequence;} else {// issue#I51EJYif (randomSequenceLimit > 1) {sequence = RandomUtil.randomLong(randomSequenceLimit);} else {sequence = 0L;}}lastTimestamp = timestamp;return ((timestamp - twepoch) << TIMESTAMP_LEFT_SHIFT)| (dataCenterId << DATA_CENTER_ID_SHIFT)| (workerId << WORKER_ID_SHIFT)| sequence;}/*** 下一个ID(字符串形式)** @return ID 字符串形式*/public String nextIdStr() {return Long.toString(nextId());}// ------------------------------------------------------------------------------------------------------------------------------------ Private method start/*** 循环等待下一个时间** @param lastTimestamp 上次记录的时间* @return 下一个时间*/private long tilNextMillis(long lastTimestamp) {long timestamp = genTime();// 循环直到操作系统时间戳变化while (timestamp == lastTimestamp) {timestamp = genTime();}if (timestamp < lastTimestamp) {// 如果发现新的时间戳比上次记录的时间戳数值小,说明操作系统时间发生了倒退,报错throw new IllegalStateException(StrUtil.format("Clock moved backwards. Refusing to generate id for {}ms", lastTimestamp - timestamp));}return timestamp;}/*** 生成时间戳** @return 时间戳*/private long genTime() {return this.useSystemClock ? SystemClock.now() : System.currentTimeMillis();}}

百度-UidGenerator

百度的 UidGenerator 是百度开源基于Java语言实现的唯一ID生成器,是在雪花算法 snowflake 的基础上做了一些改进。UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略,适用于docker等虚拟化环境下实例自动重启、漂移等场景。
在实现上,UidGenerator 提供了两种生成唯一ID方式,分别是 DefaultUidGenerator 和 CachedUidGenerator,官方建议如果有性能考虑的话使用 CachedUidGenerator 方式实现。UidGenerator 依然是以划分命名空间的方式将 64-bit位分割成多个部分,只不过它的默认划分方式有别于雪花算法 snowflake。它默认是由 1-28-22-13 的格式进行划分。可根据你的业务的情况和特点,自己调整各个字段占用的位数。

  • 第1位仍然占用1bit,其值始终是0。
  • 第2位开始的28位是时间戳,28-bit位可表示2^28个数,这里不再是以毫秒而是以秒为单位,每个数代表秒则可用(1L<<28)/ (360024365) ≈ 8.51 年的时间。
  • 中间的 workId (数据中心+工作机器,可以其他组成方式)则由 22-bit位组成,可表示 2^22 = 4194304个工作ID。
  • 最后由13-bit位构成自增序列,可表示2^13 = 8192个数。

Medis 薄雾算法工程实践

https://github.com/asyncins/medis

薄雾算法 Mist 由书籍《Python3 反爬虫原理与绕过实战》的作者韦世东综合各大厂的技术点且考虑高性能分布式序列号生成器架构后设计的一款“递增态势、不依赖数据库、高性能且不受时间回拨影响”的全局唯一序列号生成算法。
Medis 是薄雾算法 Mist 的工程实践,其名取自 Mist 和 Redis。薄雾算法是一款性能强到令我惊喜的全局唯一 ID 算法。有了 Mist 和 Medis,你就拥有了和美团 Leaf、微信 Seqsvr、百度 UIDGenerator 性能相当(甚至超过)的全局唯一 ID 服务了。相比复杂的 UIDGenerator 双 Buffer 优化和 Leaf-Snowflake,薄雾算法 Mist 简单太多了。

相关文章:

探讨java系统中全局唯一ID实现方案

为什么需要全局唯一ID 我们这里引用美团 Leaf 的场景介绍&#xff1a;在复杂分布式系统中&#xff0c;往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中&#xff0c;数据日渐增长&#xff0c;对数据分库分表后需要有一…...

微信小程序(四十四)鉴权组件插槽-登入检测

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.鉴权组件插槽的用法 2.登入检测示范 源码&#xff1a; app.json {"usingComponents": {"auth":"/components/auth/auth"} }app.js App({globalData:{//定义全局变量isLoad:false} })…...

【ES】--ES集成热更新自定义词库(字典)

目录 一、问题描述二、具体实施1、Tomcat实现远程扩展字典2、验证生效3、ES配置远程扩展字典4、为何不重启ES能实现热更新 一、问题描述 问题现象: 前面完成了自定义分词器词库集成到ES中。在实际项目中词库是时刻在变更的&#xff0c;但又不希望重启ES&#xff0c;对此我们应…...

能源管理师——为能源可持续发展护航

能源管理师是在能源管理领域具有专业知识和技能的专业人士&#xff0c;他们的工作对于实现能源的有效利用和可持续发展至关重要。 能源管理师的主要职责是协助企业或组织进行能源管理&#xff0c;包括能源规划、能源审计、节能措施的实施和能源绩效的评估等。他们通过对能源使…...

设计模式理解:单例模式+工厂模式+建设者模式+原型模式

迪米特法则&#xff1a;Law of Demeter, LoD, 最少知识原则LKP 如果两个软件实体无须直接通信&#xff0c;那么就不应当发生直接的相互调用&#xff0c;可以通过第三方转发该调用。其目的是降低类之间的耦合度&#xff0c;提高模块的相对独立性。 所以&#xff0c;在运用迪米特…...

DataX源码分析 writer

系列文章目录 一、DataX详解和架构介绍 二、DataX源码分析 JobContainer 三、DataX源码分析 TaskGroupContainer 四、DataX源码分析 TaskExecutor 五、DataX源码分析 reader 六、DataX源码分析 writer 七、DataX源码分析 Channel 文章目录 系列文章目录前言DataX的Writer写入流…...

为自己的项目媒体资源添加固定高度

为自己的项目媒体资源添加固定高度 未媒体资源添加固定高度&#xff0c;不仅有利于确定懒加载后的切确位置&#xff0c;还可以做骨架屏、loading动画等等&#xff0c;但是因为历史数据中很多没有加高度的媒体资源&#xff0c;所以一直嫌麻烦没有做。 直到这个季度有一个自上而…...

家政小程序系统源码开发:引领智能生活新篇章

随着科技的飞速发展&#xff0c;小程序作为一种便捷的应用形态&#xff0c;已经深入到我们生活的方方面面。尤其在家庭服务领域&#xff0c;家政小程序的出现为人们带来了前所未有的便利。它不仅简化了家政服务的流程&#xff0c;提升了服务质量&#xff0c;还为家政服务行业注…...

多表查询

目录 统计出一张数据表中的数据量 查询 dept 表中的数据量 查询 emp 表中的数据量 实现 emp 与 dept 的多表查询 笛卡尔积 消除笛卡尔积 把数据表 emp 的别名定为 e&#xff0c;数据表 dept 的别名定为 d&#xff0c;然后在查询中分别使用 e 和 d 代替这两个表 Oracle从…...

PHP开发日志 ━━ 深入理解三元操作与一般条件语句的不同

概况 三元运算符的功能与“if…else”流程语句一致。 在一般情况下&#xff0c;三元操作替换if条件语句可以精简代码&#xff0c;并且更为直观&#xff0c;但是在下面的情况中使用三元操作将会返回警告。 借图&#xff1a; 案例 比如原代码&#xff1a; class classA{publ…...

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测 目录 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预…...

vue3-内置组件-Suspense

Suspense (实验性功能) <Suspense> 是一项实验性功能。它不一定会最终成为稳定功能&#xff0c;并且在稳定之前相关 API 也可能会发生变化。 <Suspense> 是一个内置组件&#xff0c;用来在组件树中协调对异步依赖的处理。它让我们可以在组件树上层等待下层的多个嵌…...

Rust入门:如何在windows + vscode中关闭程序codelldb.exe

在windows中用vscode单步调试rust程序的时候&#xff0c;发现无论是按下stop键&#xff0c;还是运行完程序&#xff0c;调试器codelldb.exe一直霸占着主程序不退出&#xff0c;如果此时对代码进行修改&#xff0c;后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…...

git错误整理

remote: Support for password authentication was removed on August 13, 2021. 参考&#xff1a;这篇即可 GnuTLS recv error (-110): The TLS connection was non-properly terminated. 执行下面的指令&#xff1a; git config --global http.sslVerify false...

跟着cherno手搓游戏引擎【22】CameraController、Resize

前置&#xff1a; YOTO.h: #pragma once//用于YOTO APP#include "YOTO/Application.h" #include"YOTO/Layer.h" #include "YOTO/Log.h"#include"YOTO/Core/Timestep.h"#include"YOTO/Input.h" #include"YOTO/KeyCod…...

微信小程序(四十二)wechat-http拦截器

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.wechat-http请求的封装 2.wechat-http请求的拦截器的用法演示 源码&#xff1a; utils/http.js import http from "wechat-http"//设置全局默认请求地址 http.baseURL "https://live-api.ith…...

tomcat部署zrlog

1.下载zrlog包&#xff0c;并添加到虚拟机中 1)进入/opt/apache-tomcat-8.5.90/webapps目录 cd /opt/apache-tomcat-8.5.90/webapps2)下载zrlog包 wget http://dl.zrlog.com/release/zrlog-1.7.1-baaecb9-release.war 3)重命名包 mv zrlog-1.7.1-baaecb9-release zrblog 2…...

Ubuntu Desktop 开机数字小键盘

Ubuntu Desktop 开机数字小键盘 1. 开机数字小键盘References 1. 开机数字小键盘 一般情况下&#xff0c;Ubuntu 开机后小键盘区是控制方向键而非数字键&#xff0c;每次开机后若用到数字键都需要按下 NumLock 键。 References [1] Yongqiang Cheng, https://yongqiang.blog…...

树莓派编程基础与硬件控制

1.编程语言 Python 是一种泛用型的编程语言&#xff0c;可以用于大量场景的程序开发中。根据基于谷歌搜 索指数的 PYPL&#xff08;程序语言流行指数&#xff09;统计&#xff0c;Python 是 2019 年 2 月全球范围内最为流行 的编程语言 相比传统的 C、Java 等编程语言&#x…...

autojs通过正则表达式获取带有数字的text内容

视频连接 视频连接 参考 参考 var ctextMatches(/\d/).findOne()console.log("当前金币"c.text()) // 获取当前金币UiSelector.textMatches(reg) reg {string} | {Regex} 要满足的正则表达式。 为当前选择器附加控件"text需要满足正则表达式reg"的条件。 …...

Android java基础_类的继承

一.Android Java基础_类的继承 先封装一个persion类&#xff0c;在persion的基础上定义Student类&#xff0c;并基础persion类。 子类能访问父类的成员函数。 class Person {private int age;public void setAge(int age) {if (age < 0 || age > 200)age 0;else {thi…...

nginx stream proxy 模块的ssl连接源码分析

目录 1. 源起2. 分析验证环境的配置3. 源码分析3.1 代理模块的请求入口点分析3.2 发起与上游服务器的连接3.3 连接回调3.4 TCP连接建立成功后为上下游数据透传做准备3.5 TCP连接的ssl上下文初始化3.6 ssl握手成功后的处理3.7 连接数据的收与发1. 源起 我一直来对ssl建立连接的过…...

C#面:Static Nested Class 和 Inner Class 有什么不同

这是两种不同的类嵌套方式。 Static Nested Class &#xff1a; 是一个静态嵌套类&#xff0c;它是在外部类中定义的一个静态类。它可以访问外部类的静态成员和方法&#xff0c;但不能直接访问外部类的非静态成员和方法。静态嵌套类可以独立于外部类实例化&#xff0c;即可以…...

LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】

文章目录 前言LeetCode、208. 实现 Trie (前缀树)【中等&#xff0c;自定义数据结构】题目链接与分类思路 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客之星、阿里云平台优质作者、专注于Java后端技术领…...

java数据结构与算法刷题-----LeetCode151. 反转字符串中的单词

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 解题思路 这道题&#xff0c;可以理解为&#xff0c;将字符串颠倒&#xf…...

《Java 简易速速上手小册》第8章:Java 性能优化(2024 最新版)

文章目录 8.1 性能评估工具 - 你的性能探测仪8.1.1 基础知识8.1.2 重点案例&#xff1a;使用 VisualVM 监控应用性能8.1.3 拓展案例 1&#xff1a;使用 JProfiler 分析内存泄漏8.1.4 拓展案例 2&#xff1a;使用 Gatling 进行 Web 应用压力测试 8.2 JVM 调优 - 魔法引擎的调校8…...

mysql全国省市县三级联动创表sql(一)

1. 建表sql CREATE TABLE province (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code CHAR ( 6 ) NOT NULL COMMENT 省份编码,name VARCHAR ( 40 ) NOT NULL COMMENT 省份名称 ) COMMENT 省份信息表;CREATE TABLE city (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code …...

go面试题--使用两个goroutine交替打印数字与字母

使用两个goroutine交替打印数字与字母 题目如下&#xff1a; 使用两个goroutine交替打印序列&#xff0c;一个goroutine打印数字&#xff0c;另外一个goroutine打印字母&#xff0c;最终效果如下&#xff1a; 12AB34CD56EF78GH910IZ1112KL1314MN1516OP1718QR1920ST2122UV2324W…...

DolphinScheduler-3.2.0 集群搭建

目录 一、基础环境准备 1.1 组件下载地址 1.2 前置准备工作 二、 DolphinScheduler集群部署 2.1 解压安装包 2.2 配置数据库 2.3 准备 DolphinScheduler 启动环境 2.3.1 配置用户免密及权限 2.3.2 配置机器 SSH 免密登陆 2.3.3 启动 zookeeper集群 2.3.4 修改instal…...

07:Kubectl 命令详解|K8S资源对象管理|K8S集群管理(重难点)

Kubectl 命令详解&#xff5c;K8S资源对象管理&#xff5c;K8S集群管理 kubectl管理命令kubectl get 查询资源常用的排错命令kubectl run 创建容器 POD原理pod的生命周期 k8s资源对象管理资源文件使用资源文件管理对象Pod资源文件deploy资源文件 集群调度的规则扩容与缩减集群更…...

【设计模式】springboot3项目整合模板方法深入理解设计模式之模板方法(Template Method)

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Spring 狂野之旅&#xff1a;底层原理高级进阶》 &#x1f680…...

Windows搭建docker+k8s

安装Docker Desktop 从官网下载&#xff0c;然后直接安装即可&#xff0c;过程很简单&#xff0c;一直Next就行。 有一点需要注意就是要看好对应的版本&#xff0c;因为后边涉及到版本的问题。 https://www.docker.com/products/docker-desktop 安装完成&#xff0c;双击图…...

年假作业10

一、选择题 BBDBACCCAD 二、填空题 1,4,13,40 3715 358 5 2 6 1 5 4 8 2 0 2 三、编程题 1、 #include <iostream> #include<array> #include <limits> using namespace std; int main() {array<int,10> score;array<int,10>::iterat…...

[ai笔记4] 将AI工具场景化,应用于生活和工作

欢迎来到文思源想的AI空间&#xff0c;这是技术老兵重学ai以及成长思考的第4篇分享内容&#xff01; 转眼已经到了大年初三&#xff0c;但是拜年的任务还只完成了一半&#xff0c;准备的大部头的书&#xff0c;现在也就看了两本&#xff0c;还好AI笔记通过每天早起坚持了下来。…...

【生产实测可用】Redis修改集群弱口令

起因 漏扫redis连接发现弱口令需要修改 先连上去看看是空口令还是弱口令 redis-cli -p 6379 -h a.b.c.d info sentinel找到启动服务器的配置文件 cp -av /app/redis-7001/redis.conf /app/redis-7001/redis.conf.bak20240207 echo "requirepass 口令" >>/a…...

备战蓝桥杯---图论基础理论

图的存储&#xff1a; 1.邻接矩阵&#xff1a; 我们用map[i][j]表示i--->j的边权 2.用vector数组&#xff08;在搜索专题的游戏一题中应用过&#xff09; 3.用邻接表&#xff1a; 下面是用链表实现的基本功能的代码&#xff1a; #include<bits/stdc.h> using nam…...

[office] excel2003进行可视性加密的方法 #媒体#其他#知识分享

excel2003进行可视性加密的方法 Excel如何对重要文件进行可视性的加密处理呢?下面是小编带来的关于excel2003进行可视性加密的方法&#xff0c;希望阅读过后对你有所启发! excel2003进行可视性加密的方法&#xff1a; 可视性加密步骤1&#xff1a;打开你要加密的excel2003文档…...

算法沉淀——分治算法(leetcode真题剖析)

算法沉淀——分治算法 快排思想01.颜色分类02.排序数组03.数组中的第K个最大元素04.库存管理 III 归并思想01.排序数组02.交易逆序对的总数03.计算右侧小于当前元素的个数04.翻转对 分治算法是一种解决问题的算法范式&#xff0c;其核心思想是将一个大问题分解成若干个小问题&a…...

Qt 进程守护程序

Qt 进程守护程序 简单粗暴的监控&#xff0c;方法可整合到其他代码。 一、windows环境下 1、进程查询函数 processCount函数用于查询系统所有运行的进程中该进程运行的数量&#xff0c;比如启动了5个A进程&#xff0c;该函数查询返回的结果就为5。 windows下使用了API接口查询…...

Linux_文件系统

假定外部存储设备为磁盘&#xff0c;文件如果没有被使用&#xff0c;那么它静静躺在磁盘上&#xff0c;如果它被使用&#xff0c;则文件将被加载进内存中。故此&#xff0c;可以将文件分为内存文件和磁盘文件。 内存文件 磁盘文件 软、硬链接 一.内存文件 1.1 c语言的文件接口 …...

算法沉淀——链表(leetcode真题剖析)

算法沉淀——链表 01.两数相加02.两两交换链表中的节点03.重排链表04.合并 K 个升序链表05.K个一组翻转链表 链表常用技巧 1、画图->直观形象、便于理解 2、引入虚拟"头节点" 3、要学会定义辅助节点&#xff08;比如双向链表的节点插入&#xff09; 4、快慢双指针…...

Flink从入门到实践(一):Flink入门、Flink部署

文章目录 系列文章索引一、快速上手1、导包2、求词频demo&#xff08;1&#xff09;要读取的数据&#xff08;2&#xff09;demo1&#xff1a;批处理&#xff08;离线处理&#xff09;&#xff08;3&#xff09;demo2 - lambda优化&#xff1a;批处理&#xff08;离线处理&…...

python分离字符串 2022年12月青少年电子学会等级考试 中小学生python编程等级考试二级真题答案解析

目录 python分离字符串 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python分离字符串 2022年12月 python编程等级考试级编程题 一、题目要…...

Excel练习:折线图突出最大最小值

Excel练习&#xff1a;折线图突出最大最小值 ​​ 要点&#xff1a;NA值在折现图中不会被绘制&#xff0c;看似一条线&#xff0c;实际是三条线。换成0值和""都不行。 ‍ 查看所有已分享Excel文件-阿里云 ‍ 学习的这个视频&#xff1a;Excel折线图&#xff0c…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之MenuItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、MenuItem组件 用来展示菜单Menu中具体的item菜单项。 子组件 无。 接口 Men…...

Mockito测试框架中的方法详解

这里写目录标题 第一章、模拟对象1.1&#xff09;①mock()方法&#xff1a;1.2&#xff09;②spy()方法&#xff1a; 第二章、模拟对象行为2.1&#xff09;模拟方法调用①when()方法 2.2&#xff09;模拟返回值②thenReturn(要返回的值)③doReturn() 2.3&#xff09;模拟并替换…...

Atcoder ABC339 A - TLD

TLD 时间限制&#xff1a;2s 内存限制&#xff1a;1024MB 【原题地址】 所有图片源自Atcoder&#xff0c;题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例输入1】 atcoder.jp【样例输出1】 jp【样例说明…...

企业级DevOps实战

第1章 Zookeeper服务及MQ服务 Zookeeper&#xff08;动物管理员&#xff09;是一个开源的分布式协调服务&#xff0c;目前由Apache进行维护。 MQ概念 MQ&#xff08;消息队列&#xff09;是一种应用程序之间的通信方法&#xff0c;应用程序通过读写出入队列的消息&#xff0…...

C++中的new和delete

1.new和delete的语法 我们知道C语言的内存管理方式是malloc、calloc、realloc和free&#xff0c;而我们的C中除了可以使用这些方式之外还可以选择使用new和delete来进行内存管理。 new和delete的主要语法如下 从上面的代码我们只能知道new要比malloc好写一些&#xff0c;但是其…...

rtt设备io框架面向对象学习-dac设备

目录 1.dac设备基类2.dac设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.dac设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的dac.h定义了如下dac设备基类 struct rt_da…...