当前位置: 首页 > news >正文

视觉slam十四讲学习笔记(六)视觉里程计 1

本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。

目录

前言

一、特征点法

1 特征点

2 ORB 特征

FAST 关键点

BRIEF 描述子

3 特征匹配

二、实践:特征提取和匹配

三、2D-2D: 对极几何

1 对极约束

2 本质矩阵

3 单应矩阵

四、实践:对极约束求解相机运动

五、三角测量

总结


前言

1. 理解图像特征点的意义, 并掌握在单幅图像中提取出特征点,及多幅图像中匹配特征点的方法。

2. 理解对极几何的原理,利用对极几何的约束,恢复出图像之间的摄像机的三维运动。

3. 理解 PNP 问题,及利用已知三维结构与图像的对应关系,求解摄像机的三维运动。

4. 理解 ICP 问题,及利用点云的匹配关系,求解摄像机的三维运动。

5. 理解如何通过三角化,获得二维图像上对应点的三维结构。

哔哩哔哩课程链接:视觉SLAM十四讲ch7_1_哔哩哔哩_bilibili


一、特征点法

特征点法通常是指在计算机视觉和图像处理中使用的一种方法,其目的是检测和描述图像中的关键特征点。这些特征点可以是图像中独特或显著的位置,如角点、边缘点等,它们在不同图像中具有相似性,因此可以用来进行图像匹配、目标跟踪、三维重建等应用。

特征点法的一般步骤包括以下几个方面:

  1. 特征点检测: 通过一些算法检测图像中的关键特征点,这些特征点通常是在局部区域内显著的位置,例如角点、边缘点等。常用的特征点检测算法包括Harris角点检测、Shi-Tomasi角点检测、SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)等。

  2. 特征点描述: 对于检测到的特征点,需要提取其特征描述子,以便后续匹配。这些描述子通常是能够表征特征点周围局部结构的向量或矩阵。常用的特征描述算法包括SIFT描述子、SURF描述子、ORB(Oriented FAST and Rotated BRIEF)描述子等。

  3. 特征点匹配: 在不同图像中,通过比较特征点的描述子,找到相似的特征点对,从而建立图像间的对应关系。匹配可以使用一些距离度量或相似性度量来完成。

  4. 应用: 特征点法的应用非常广泛,包括图像配准、目标跟踪、三维重建、拼接图像、物体识别等领域。

特征点

VO 的主要问题是如何根据图像来估计相机运动。然而,图像本身是一个由亮度和色彩组成的矩阵,如果直接从矩阵层面考虑运动估计,将会非常困难。所以,习惯于采用这样一种做法:首先,从图像中选取比较有代表性的点。这些点在相机视角发生少量变化后会保持不变,所以会在各个图像中找到相同的点。然后,在这些点的基础上,讨论相机位姿估计问题,以及这些点的定位问题。在经典 SLAM 模型中,把它们称为路标。而在视觉 SLAM 中,路标则是指图像特征(Features)。

  • 特征是图像信息的另一种数字表达形式
  • 特征点在相机运动之后保持稳定。
  • 特征点是图像里一些特别的地方

可以作为图像特征的部分:角点、边缘、区块。

人工设计的特征点能够拥有如下的性质:

1. 可重复性Repeatability):相同的“区域”可以在不同的图像中被找到。

2. 可区别性Distinctiveness):不同的“区域”有不同的表达。

3. 高效率Efficiency):同一图像中,特征点的数量应远小于像素的数量。

4. 本地性Locality):特征仅与一小片图像区域相关。

特征点由关键点Key-point)和描述子Descriptor)两部分组成。

比方说,当谈论 SIFT 特征时,是指“提取 SIFT 关键点,并计算 SIFT 描述子”两件事情。关键点是指该特征点在图像里的位置,有些特征点还具有朝向、大小等信息。描述子通常是一个向量,按照某种人为设计的方式,描述了该关键点周围像素的信息。描述子是按照“外观相似的特征应该有相似的描述子”的原则设计的。因此,只要两个特征点的描述子在向量空间上的距离相近,就可以认为它们是同样的特征点。

2 ORB 特征

OpenCV 提供的 ORB 特征点检测结果。

ORB 特征亦由关键点描述子两部分组成。它的关键点称为“Oriented FAST”,是一种改进的 FAST 角点,什么是 FAST 角点我们将在下文介绍。它的描述子称为 BRIEF(Binary Robust Independent Elementary Features)。因此,提取 ORB 特征分为两个步骤:

1. FAST 角点提取:找出图像中的角点。相较于原版的 FAST, ORB 中计算了特征点的主方向,为后续的 BRIEF 描述子增加了旋转不变特性。

2. BRIEF 描述子:对前一步提取出特征点的周围图像区域进行描述。

FAST 关键点

FAST(Features from Accelerated Segment Test)是一种用于快速检测图像中角点的特征点检测算法。FAST 算法主要用于实时应用,它在速度和计算效率上表现出色,并且在相对平滑的图像中能够准确地检测到关键点。

以下是 FAST 算法的主要特点和步骤:

  1. 加速度段测试(Accelerated Segment Test): FAST 算法使用一种称为加速度段测试的策略来判断一个像素是否是关键点。在这个测试中,选择了一个中心像素点和周围的16个像素点,然后根据这些像素点的灰度值与中心像素的灰度值进行比较,以判断中心像素是否是一个关键点。这个测试是基于一种简单的圆形区域的像素采样。

  2. 非极大值抑制: 在加速度段测试的结果中,如果中心像素是一个关键点,就会产生一些相邻的像素点也可能被认为是关键点。为了防止重复检测,FAST 算法进行非极大值抑制,只选择那些在某个阈值下,灰度值超过相邻像素灰度值的中心像素点作为最终的关键点。

  3. 参数选择: FAST 算法中有一个重要的参数,即阈值。阈值的选择影响到算法的灵敏度,可以根据具体应用场景进行调整。

FAST 算法的优点在于其计算速度快,适用于实时应用,但缺点是对图像噪声和纹理较敏感。在一些情况下,FAST 可以用于快速初始化特征点,然后通过其他方法(例如,通过机器学习方法或描述子匹配)来提高准确性。FAST 算法常常用于计算机视觉领域中的实时特征点检测,如图像拼接、物体跟踪和视觉SLAM(Simultaneous Localization and Mapping)等应用中。

FAST 是一种角点,主要检测局部像素灰度变化明显的地方,以速度快著称。它的思想是:如果一个像素与它邻域的像素差别较大(过亮或过暗), 那它更可能是角点。相比于其他角点检测算法,FAST 只需比较像素亮度的大小,十分快捷。它的检测过程如下

1. 在图像中选取像素 p,假设它的亮度为 Ip

2. 设置一个阈值 T(比如 Ip 20%)

3. 以像素 p 为中心, 选取半径为 3 的圆上的 16 个像素点。

4. 假如选取的圆上,有连续的 N 个点的亮度大于 Ip + T 或小于 Ip T,那么像素 p可以被认为是特征点 (N 通常取 12,即为 FAST-12。其它常用的 N 取值为 9 11,他们分别被称为 FAST-9FAST-11)

5. 循环以上四步,对每一个像素执行相同的操作。

针对 FAST 角点不具有方向性和尺度的弱点,ORB 添加了尺度和旋转的描述。尺度不变性由构建图像金字塔,并在金字塔的每一层上检测角点来实现。而特征的旋转是由灰度质心法(Intensity Centroid)实现的。

BRIEF 描述子

BRIEF(Binary Robust Independent Elementary Features)是一种用于图像特征描述的算法。它主要用于生成图像中检测到的关键点的二进制描述子,用于在图像匹配和目标识别等任务中进行特征匹配。

以下是 BRIEF 描述子的主要特点和步骤:

  1. 二进制描述子生成: BRIEF 描述子的主要思想是通过在关键点周围选择一组固定的、随机的像素对,并比较它们的灰度值来生成二进制字符串。这些比较结果被编码成二进制位,形成一个二进制向量,称为 BRIEF 描述子。

  2. 随机选择的像素对: BRIEF 算法在每个关键点周围随机选择一组像素对,这些像素对的选择对于最终的描述子起到关键作用。这种随机性带来了描述子的差异性,使其更具区分性。

  3. 描述子长度: BRIEF 描述子的长度由用户指定,通常为一个定长的二进制字符串。较长的描述子可能提供更好的区分性,但也需要更多的存储和计算资源。

  4. 不变性: BRIEF 描述子相对于尺度和旋转是不变的。这是通过在图像尺度空间中选择随机像素对的方法实现的。

尽管 BRIEF 描述子具有计算速度快、存储需求低的优势,但它对图像噪声和干扰较为敏感。为了提高鲁棒性,通常会与其他算法一起使用,例如在关键点检测中可以与 FAST 等方法结合使用。

总体而言,BRIEF 描述子在实时图像处理和计算资源受限的场景中表现良好,特别适用于嵌入式系统和移动设备等应用。

3 特征匹配

特征匹配是视觉 SLAM 中极为关键的一步,宽泛地说,特征匹配解决了 SLAM 中的数据关联问题(data association),即确定当前看到的路标与之前看到的路标之间的对应系。通过对图像与图像,或者图像与地图之间的描述子进行准确的匹配,可以为后续的姿态估计,优化等操作减轻大量负担。然而,由于图像特征的局部特性,误匹配的情况广泛存在,而且长期以来一直没有得到有效解决,目前已经成为视觉 SLAM 中制约性能提升的一大瓶颈。部分原因是因为场景中经常存在大量的重复纹理,使得特征描述非常相似。在这种情况下,仅利用局部特征解决误匹配是非常困难的。

  • 最简单的特征匹配方法就是暴力匹配(Brute-Force Matcher
  • 描述子距离表示了两个特征之间的相似程度,不过在实际运用中还可以取不同的距离度量范数。
  • 用汉明距离(Hamming distance)做为度量——两个二进制串之间的汉明距离,指的是它们不同位数的个数。
  • 快速近似最近邻( FLANN 算法更加适合于匹配点数量极多的情况。

二、实践:特征提取和匹配

slambook/ch7/feature_extraction.cpp
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>using namespace std;
using namespace cv;int main ( int argc, char** argv )
{if ( argc != 3 ){cout<<"usage: feature_extraction img1 img2"<<endl;return 1;}//-- 读取图像Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );//-- 初始化std::vector<KeyPoint> keypoints_1, keypoints_2;Mat descriptors_1, descriptors_2;Ptr<FeatureDetector> detector = ORB::create();Ptr<DescriptorExtractor> descriptor = ORB::create();// Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );//-- 第一步:检测 Oriented FAST 角点位置detector->detect ( img_1,keypoints_1 );detector->detect ( img_2,keypoints_2 );//-- 第二步:根据角点位置计算 BRIEF 描述子descriptor->compute ( img_1, keypoints_1, descriptors_1 );descriptor->compute ( img_2, keypoints_2, descriptors_2 );Mat outimg1;drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );imshow("ORB特征点",outimg1);//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离vector<DMatch> matches;//BFMatcher matcher ( NORM_HAMMING );matcher->match ( descriptors_1, descriptors_2, matches );//-- 第四步:匹配点对筛选double min_dist=10000, max_dist=0;//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离for ( int i = 0; i < descriptors_1.rows; i++ ){double dist = matches[i].distance;if ( dist < min_dist ) min_dist = dist;if ( dist > max_dist ) max_dist = dist;}// 仅供娱乐的写法min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;printf ( "-- Max dist : %f \n", max_dist );printf ( "-- Min dist : %f \n", min_dist );//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.std::vector< DMatch > good_matches;for ( int i = 0; i < descriptors_1.rows; i++ ){if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) ){good_matches.push_back ( matches[i] );}}//-- 第五步:绘制匹配结果Mat img_match;Mat img_goodmatch;drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );imshow ( "所有匹配点对", img_match );imshow ( "优化后匹配点对", img_goodmatch );waitKey(0);return 0;
}

对ch7文件夹中的cmake工程进行编译,报错:

undefined reference to `vtable for fmt::v7::format_error

链接上fmt 库:

target_link_libraries("可执行文件" ${Sophus_LIBRARIES} fmt)

未筛选的匹配中带有大量的误匹配。经过一次筛选之后,匹配数量减少了许多,大多数匹配都是正确的。这里筛选的依据是汉明距离小于最小距离的两倍,这是一种工程上的经验方法。尽管在示例图像中能够筛选出正确的匹配,但仍然不能保证在所有其他图像中得到的匹配都是正确的。因此,在后面的运动估计中,还需要使用去除误匹配的算法。

三、2D-2D: 对极几何

1 对极约束

对极约束简洁地给出了两个匹配点的空间位置关系。于是,相机位姿估计问题变为以下两步:

1. 根据配对点的像素位置,求出 E 或者 F

2. 根据 E 或者 F,求出 R, t

由于 E F 只相差了相机内参,而内参在 SLAM 中通常是已知的,所以实践当中往往使用形式更简单的 E。我们以 E 为例,介绍上面两个问题如何求解。

本质矩阵

根据定义,本质矩阵 E = t R。它是一个 3 × 3 的矩阵,内有 9 个未知数。那么,是不是任意一个 3 × 3 的矩阵都可以被当成本质矩阵呢?从 E 的构造方式上看,有以下值得注意的地方:

本质矩阵是由对极约束定义的。由于对极约束是等式为零的约束,所以对 E 乘以任意非零常数后,对极约束依然满足。把这件事情称为 E 在不同尺度下是等价的。

根据 E = t R,可以证明 [3],本质矩阵 E 的奇异值必定是 [σ, σ, 0]T 的形式。这称为本质矩阵的内在性质

另一方面,由于平移和旋转各有三个自由度,故 t R 共有六个自由度。但由于尺度等价性,故 E 实际上有五个自由度。

E 具有五个自由度的事实,表明我们最少可以用五对点来求解 E。但是,E 的内在性质是一种非线性性质,在求解线性方程时会带来麻烦,因此,也可以只考虑它的尺度等价性,使用八对点来估计 E——这就是经典的八点法(Eight-point-algorithm。八点法只利用了 E 的线性性质,因此可以在线性代数框架下求解。

3 单应矩阵

除了基本矩阵和本质矩阵,还有一种称为单应矩阵(HomographyH 的东西,它描述了两个平面之间的映射关系。

四、实践:对极约束求解相机运动

五、三角测量

三角化获得地图点深度


总结

本文内容结束,关于实践部分,预计后续更新!

相关文章:

视觉slam十四讲学习笔记(六)视觉里程计 1

本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点&#xff0c;如何提取和匹配特征点&#xff0c;以及如何根据配对的特征点估计相机运动。 目录 前言 一、特征点法 1 特征点 2 ORB 特征 FAST 关键点 BRIEF 描述子 3 特征匹配 二、实践&#xff1a;特征提取…...

PyTorch-线性回归

已经进入大模微调的时代&#xff0c;但是学习pytorch&#xff0c;对后续学习rasa框架有一定帮助吧。 <!-- 给出一系列的点作为线性回归的数据&#xff0c;使用numpy来存储这些点。 --> x_train np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],[9.779], [6.1…...

C++数据结构与算法——栈与队列

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…...

掌上新闻随心播控,HarmonyOS SDK助力新浪新闻打造精致易用的资讯服务新体验

原生智能是HarmonyOS NEXT的核心亮点之一&#xff0c;依托HarmonyOS SDK丰富全面的开放能力&#xff0c;开发者只需通过几行代码&#xff0c;即可快速实现AI功能。新浪新闻作为鸿蒙原生应用开发的先行者之一&#xff0c;从有声资讯入手&#xff0c;将基于Speech Kit朗读控件上线…...

2024年危险化学品经营单位主要负责人证模拟考试题库及危险化学品经营单位主要负责人理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证模拟考试题库及危险化学品经营单位主要负责人理论考试试题是由安全生产模拟考试一点通提供&#xff0c;危险化学品经营单位主要负责人证模拟考试题库是根据危险化学品经营单位主…...

C/C++如何把指针所指向的指针设为空指针?

实践出真知&#xff0c;指针对于初学的友友来说&#xff0c;头都要大了。喵喵一直遵循在实践中学&#xff0c;在学习中实践&#xff0c;相信你也会有所得&#xff01; 以下是该问题的解决方案&#xff1a; int** ptrPtr new int*; // 创建指向指针的指针 int* ptr new int;…...

第三节:基于 InternLM 和 LangChain 搭建你的知识库(课程笔记)

视频链接&#xff1a;https://www.bilibili.com/video/BV1sT4y1p71V/?vd_source3bbd0d74033e31cbca9ee35e111ed3d1 文档地址&#xff1a; https://github.com/InternLM/tutorial/tree/main/langchain 课程笔记&#xff1a; 1.仅仅包含训练时间点之前的数据&#xff0c;无法…...

qt-C++笔记之打印所有发生的事件

qt-C笔记之打印所有发生的事件 code review! 文章目录 qt-C笔记之打印所有发生的事件1.ChatGPT问答使用 QApplication 的 notify 方法使用 QObject 的 event 方法 2.使用 QObject 的 event 方法3.使用 QApplication 的 notify 方法 1.ChatGPT问答 在Qt C中&#xff0c;若要打…...

pytorch 实现线性回归(深度学习)

一 查看原始函数 初始化 %matplotlib inline import random import torch from d2l import torch as d2l 1.1 生成原始数据 def synthetic_data(w, b, num_examples):x torch.normal(0, 1, (num_examples, len(w)))y torch.matmul(x, w) bprint(x:, x)print(y:, y)y tor…...

[Doris] Doris的安装和部署 (二)

文章目录 1.安装要求1.1 Linux操作系统要求1.2 软件需求1.3 注意事项1.4 内部端口 2.集群部署2.1 操作系统安装要求2.2 下载安装包2.3 解压2.4 配置FE2.5 配置BE2.6 添加BE2.7 FE 扩容和缩容2.8 Doris 集群群起脚本 3.图形化 1.安装要求 1.1 Linux操作系统要求 1.2 软件需求 1…...

【QT+QGIS跨平台编译】之三十五:【cairo+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、cairo介绍二、文件下载三、文件分析四、pro文件五、编译实践一、cairo介绍 Cairo是一个功能强大的开源2D图形库,它提供了一套跨平台的API,用于绘制矢量图形和文本。Cairo支持多种输出目标,包括屏幕、图像文件、PDF、SVG等。 Cairo的设计目标是简单易用、高效…...

MySQL(基础)

第01章_数据库概述 1. 为什么要使用数据库 持久化(persistence)&#xff1a;把数据保存到可掉电式存储设备中以供之后使用。大多数情况下&#xff0c;特别是企业级应用&#xff0c;数据持久化意味着将内存中的数据保存到硬盘上加以”固化”&#xff0c;而持久化的实现过程大多…...

STM32F1 - 中断系统

Interrupt 1> 硬件框图2> NVIC 中断管理3> EXTI 中断管理3.1> EXTI与NVIC3.2> EXTI内部框图 4> 外部中断实验4.1> 实验概述4.2> 程序设计 5> 中断向量表6> 总结 1> 硬件框图 NVIC&#xff1a;Nested Vectored Interrupt Controller【嵌套向量…...

【Linux系统化学习】缓冲区

目录 缓冲区 一个样例 现象解释 缓冲区存在的位置 缓冲区 在刚开始学习C语言的时候我们就听过缓冲区这个名词&#xff0c;很是晦涩难懂&#xff1b;在Linux下进程退出时也包含缓冲区&#xff0c;因此缓冲区到底是什么&#xff1f;有什么作用&#xff1f; 让我们先从一个小…...

基于BP算法的SAR成像matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 BP算法的基本原理 4.2 BP算法的优点与局限性 5.完整工程文件 1.课题概述 基于BP算法的SAR成像。合成孔径雷达&#xff08;SAR&#xff09;是一种高分辨率的雷达系统&#xff0c;能够在各种天气和光…...

【C++ STL】你真的了解string吗?浅谈string的底层实现

文章目录 底层结构概述扩容机制浅拷贝与深拷贝插入和删除的效率浅谈VS和g的优化总结 底层结构概述 string可以帮助我们很好地管理字符串&#xff0c;但是你真的了解她吗&#xff1f;事实上&#xff0c;string的设计是非常复杂的&#xff0c;拥有上百个接口&#xff0c;但最常用…...

17.3.1.3 灰度

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 灰度的算法主要有以下三种&#xff1a; 1、最大值法: 原图像&#xff1a;颜色值color&#xff08;R&#xff0c;G&#xff0c;B&a…...

基于CAS操作的atomic原子类型

在上一节的卖票程序中&#xff0c;我们讲解了如何在多线程中保证临界资源的正确访问——使用互斥锁&#xff0c;即 lock_guard<mutex> lock(mtx); count;lock_guard<mutex> lock(mtx); count--; 从汇编角度解释线程间互斥-mutex互斥锁与lock_guard的使用-CSDN博客…...

Rust HashMap详解及单词统计示例

在Rust中&#xff0c;HashMap是一种非常有用的数据结构&#xff0c;用于存储键值对。本文将深入介绍HashMap的特性&#xff0c;以及通过一个单词统计的例子展示其用法。 HashMap简介 HashMap是Rust标准库提供的用于存储键值对的数据结构。它允许通过键快速查找对应的值&#…...

命令执行讲解和函数

命令执行漏洞简介 命令执行漏洞产生原因 应用未对用户输入做严格得检查过滤&#xff0c;导致用户输入得参数被当成命令来执行 命令执行漏洞的危害 1.继承Web服务程序的权限去执行系统命会或读写文件 2.反弹shell&#xff0c;获得目标服务器的权限 3.进一步内网渗透 远程代…...

外包实在是太坑了,划水三年,感觉人都废了

先说一下自己的情况&#xff0c;专科生&#xff0c;19年通过校招进入杭州某个外包软件公司&#xff0c;干了接近3年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了3年的功…...

代码随想录算法训练营第19天

77. 组合 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 class Solution:def combine(self, n: int, k: int) -> List[List[int]]:path []res []def dfs(n,k,index):if len(path) k:res.append(path[:])returnfor i in range(index,n1):…...

树莓派5 EEPROM引导加载程序恢复镜像

树莓派5不能正常启动&#xff0c;可以通过电源led灯的闪码来判断错误发生的大致情形。 LED警告闪码 如果树莓派由于某种原因无法启动&#xff0c;或者不得不关闭&#xff0c;在许多情况下&#xff0c;LED会闪烁特定的次数来指示发生了什么。LED会闪烁几次长闪烁&#xff0c;然…...

循序渐进-讲解Markdown进阶(Mermaid绘图)-附使用案例

Markdown 进阶操作 查看更多学习笔记&#xff1a;GitHub&#xff1a;LoveEmiliaForever Mermaid官网 由于CSDN对某些Mermaid或Markdown语法不支持&#xff0c;因此我的某些效果展示使用图片进行 下面的笔记内容全部是我根据Mermaid官方文档学习的&#xff0c;因为是初学者所以…...

寒假作业2月6号

第五章 静态成员与友元 一、填空题 1、一个类的头文件如下所示&#xff0c;num初始化值为5&#xff0c;程序产生对象T&#xff0c;且修改num为10&#xff0c;并使用show()函数输出num的值10。 #include <iostream.h> class Test { private: static int num; publi…...

ChatGPT绘图指南:DALL.E3玩法大全(一)

一、 DALLE.3 模型介绍 1、什么是 DALLE.3 模型&#xff1f; DALLE-3模型&#xff0c;是一种由OpenAI研发的技术&#xff0c;它是一种先进的生成模型&#xff0c;可以将文字描述转化为清晰的图片。这种模型的名称"DALLE"实际上是"Deep Auto-regressive Latent …...

计算机服务器中了_locked勒索病毒怎么办?Encrypted勒索病毒解密数据恢复

随着网络技术的不断发展&#xff0c;数字化办公已经成为企业生产运营的根本&#xff0c;对于企业来说&#xff0c;数据至关重要&#xff0c;但网络威胁无处不在&#xff0c;近期&#xff0c;云天数据恢复中心接到很多企业的求助&#xff0c;企业的计算机服务器遭到了_locked勒索…...

VueCLI核心知识3:全局事件总线、消息订阅与发布

这两种方式都可以实现任意两个组件之间的通信 1 全局事件总线 1.安装全局事件总线 import Vue from vue import App from ./App.vueVue.config.productionTip false/* 1.第一种写法 */ // const Demo Vue.extend({}) // const d new Demo()// Vue.prototype.x d // 把Dem…...

Redis中缓存问题

缓存预热 Redis缓存预热是一项关键任务&#xff0c;可帮助提升应用程序的性能和响应速度。在高流量的应用程序中&#xff0c;Redis缓存预热可以加速数据查询和读取&#xff0c;从而改善用户体验。本文将介绍一种快速、稳定的Redis缓存预热方案&#xff0c;并提供相应代码实现。…...

数码管扫描显示-单片机通用模板

数码管扫描显示-单片机通用模板 一、数码管扫描的原理二、display.c的实现1、void Display(void) 各模式界面定义数据2、void BackupRamToDisRam(void)从缓存区刷新显示映射Ram3、void FreshDisplay(void) 映射显示Ram到主控的IO口4、void LcdDisplay_8bit(void) 映射显示Ram到…...

IDEA中的神仙插件——Smart Input (自动切换输入法)

IDEA中的神仙插件——Smart Input &#xff08;自动切换输入法&#xff09; 设置 更多功能详见官方文档&#xff1a;Windows版SmartInput使用入门...

shell编程:求稀疏数组中元素的和(下标不连续)

#!/bin/basharr([2]3 [5]2 [6]2 [9]1)for i in "${!arr[]}" dosum$((sumarr[i])) doneecho $sumBash 脚本中&#xff0c;* 和 符号在数组上下文中有不同的用途。当使用它们来遍历数组时&#xff0c;必须了解它们之间的区别。 * (无前置感叹号 !)&#xff1a; 在索引…...

Rust 学习笔记 - 详解数据类型

前言 任何一门编程语言几乎都脱离不了&#xff1a;变量、基本类型、函数、注释、循环、条件判断&#xff0c;这是一门编程语言的语法基础&#xff0c;只有当掌握这些基础语法及概念才能更好的学习 Rust。 标量类型&#xff08;Scalar Types&#xff09; 在 Rust 中&#xff…...

构建本地yum源

下载repo数据文件 根据需要修改下载路径和reposync参数 #!/bin/bashlocal_path/repo/remote/rhel9 enabled_repos$(yum repolist enabled | awk NR>3{print $1}) tempfile$(mktemp -t reposync.XXXX)check() {echo "目标目录剩余空间: $(df -h ${local_path} | awk …...

常用的正则表达式,收藏必备!!!

正则表达式是一种强大的文本模式匹配工具&#xff0c;用于在字符串中查找、替换和验证特定模式的文本。下面是一些常用的正则表达式示例&#xff1a; 匹配Email地址&#xff1a; ^[a-zA-Z0-9._%-][a-zA-Z0-9.-]\.[a-zA-Z]{2,}$匹配URL&#xff1a; ^(https?|ftp)://[^\s/$.?#…...

js---webAPI

01 声明变量 js组成&#xff1a; DOM:操作网页内容的,开发页面内容特效和实现用户交互 BOM: DOM树&#xff1a;将 HTML 文档以树状结构直观的表现出来&#xff0c;我们称之为文档树或 DOM 树 文档树直观的体现了标签与标签之间的关系 CSS获取元素的方法 document.querySele…...

git的常用命令有哪些?

Git 是一个流行的分布式版本控制系统&#xff0c;用于跟踪文件的变化、协作开发和管理代码。以下是一些常用的 Git 命令&#xff1a; 创建和克隆仓库&#xff1a; git init&#xff1a;在当前目录初始化一个新的 Git 仓库。git clone <仓库URL>&#xff1a;克隆一个远程仓…...

《动手学深度学习(PyTorch版)》笔记8.5

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过&…...

【蓝桥杯单片机入门记录】LED灯(附多个例程)

目录 一、LED灯概述 1.1 LED发光原理 1.2电路原理图 1.3电路实物图 1.4 开发板LED灯原理图 1.4.1共阳极LED灯操控原理&#xff08;本开发板&#xff09; &#xff08;非实际原理图&#xff0c;便于理解版本&#xff09;由图可以看出&#xff0c;每个LED灯的左边&#xf…...

c语言简单json库

文章目录 写在前面头文件源代码使用示例 写在前面 用c语言实现的一个简单json库&#xff0c;极其轻量 仅1个四百多行源码的源文件&#xff0c;和1个头文件 支持对象、数组、数值、字符串类型 github仓库 头文件 对主要的json API的声明 #ifndef ARCOJSON_ARCOJSON_H #defin…...

Linux操作系统基础(七):Linux常见命令(二)

文章目录 Linux常见命令&#xff08;二&#xff09; 一、kill命令 二、ifconfig命令 三、clear命令 四、重启与关机命令 五、which命令 六、hostname命令 七、grep命令 八、|管道 九、useradd命令 十、userdel命令 十一、tar命令 十二、su命令 十三、ps命令 Linu…...

进程状态

广义概念&#xff1a; 从广义上来讲&#xff0c;进程分为新建、运行、阻塞、挂起、退出五个状态&#xff0c;其中新建和退出两个状态可以直接理解字面意思。 运行状态&#xff1a; 这里涉及到运行队列的概念&#xff0c;CPU在读取数据的时候&#xff0c;需要把内存中的进程放入…...

STM32固件库简介与使用指南

1. STM32官方标准固件库简介 STM32官方标准固件库是由STMicroelectronics&#xff08;ST&#xff09;提供的一套软件开发工具&#xff0c;旨在简化STM32微控制器的软件开发过程。该固件库提供了丰富的功能和模块&#xff0c;涵盖了STM32微控制器的各种外设&#xff0c;包括但不…...

【开源】SpringBoot框架开发智能教学资源库系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课程资源模块2.4 课程作业模块2.5 课程评价模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 课程档案表3.2.2 课程资源表3.2.3 课程作业表3.2.4 课程评价表 四、系统展示五、核心代…...

融资项目——获取树形结构的数据

如下图所示&#xff0c;下列数据是一个树形结构数据&#xff0c;行业中包含若干子节点。表的设计如下图&#xff0c;设置了一个id为1的虚拟根节点。&#xff08;本树形结构带虚拟根节点共三层&#xff09; 实现逻辑&#xff1a; 延时展示方法&#xff0c;先展现第二层的信息&a…...

Crypto-RSA2

题目&#xff1a;&#xff08;BUUCTF在线评测 (buuoj.cn)&#xff09; 已知e,n,dp/(dq),c求明文: 首先有如下公式&#xff1a; dp ≡ d mod (p-1) &#xff0c;ed ≡ 1 mod φ(n) &#xff0c;npq &#xff0c;φ(n)(p-1)(q-1) python代码实现如下&#xff1a; import libnu…...

IEEE Internet of Things Journal投稿经验

期刊名&#xff1a;IEEE Internet of Things Journal 期刊分区&#xff1a;中科院一区 Top 影响因子&#xff1a;10.6 投稿状态 &#xff08;1&#xff09;2023.11.3&#xff0c;投稿成功&#xff0c;状态为&#xff1a;under review&#xff08;大u大r&#xff09;&#xff1…...

实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》

论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf 代码链接&#xff1a;https://github.com/pytorch/vision 摘要 卷积网络是强大的视觉模型&#xff0c;可以产生特征层次结构。我们证明&#xff0c…...

apk反编译修改教程系列---简单去除apk登陆 修改vip与一些反编译基础常识【十二】

往期教程&#xff1a; 安卓玩机-----反编译apk 修改apk 去广告 去弹窗等操作中的一些常识apk反编译修改教程系列-----修改apk应用名称 任意修改名称 签名【一】 apk反编译修改教程系列-----任意修改apk版本号 版本名 防止自动更新【二】 apk反编译修改教程系列-----修改apk中…...

网络安全习题集

第一章 绪论 4 ISO / OSI 安全体系结构中的对象认证安全服务使用&#xff08; C ) 机制来完成。 A &#xff0e;访问控制 B &#xff0e;加密 C &#xff0e;数字签名 D &#xff0e;数据完整性 5 身份鉴别是安全服务中的重要一环&#xff0c;以下关于身份鉴别的叙述不正确的是…...