当前位置: 首页 > news >正文

(12)Hive调优——count distinct去重优化

   离线数仓开发过程中经常会对数据去重后聚合统计,count distinct使得map端无法预聚合,容易引发reduce端长尾,以下是count distinct去重调优的几种方式。

解决方案一:group by 替代

原sql 如下:

#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVcount(distinct case when dt >= '${7d_before}' then user_id else null end)  as 7d_uv, 
--14日内UVcount(distinct case when dt >= '${14d_before}' then user_id else null end) as 14d_uv 
from tbl
where dt >= '${14d_before}'
group by group_id, --渠道app_id;  --app

优化思路:group by两阶段聚合

#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVsum(case when 7d_cnt > 0 then 1 else 0 end) as 7d_uv,
--14日内UVsum(case when 14d_uv > 0 then 1 else 0 end) as 14d_uvfrom (selectgroup_id,app_id,-- 7日内各渠道各app下的每个用户的点击量count(case when dt >= '${7d_before}' then user_id else null end)  as 7d_cnt,-- 14日内各渠道各app下的每个用户点击量count(case when dt >= '${14d_before}' then user_id else null end) as 14d_uvfrom tblwhere dt >= '${14d_before}'group by group_id,app_id,user_id) tmp1
group by group_id,app_id;

方案一弊端:数据倾斜风险

  解决方案一通过两阶段group by(分组聚合) 对count (distinct) 进行改造调优,需要注意的是:如果分组字段user_id在tbl 表中存在大量的重复值,group by底层走shuffle,会有数据倾斜的风险,因此方案一还可以进一步优化。

解决方案二:group by调优

1)添加随机数,两阶段聚合(推荐

#===============优化前
insert overwrite table tblB partition (dt = '2022-10-19')
selectcookie_id,event_query,count(*)  as cnt
from tblA
where dt >= '20220718'and dt <= '20221019'and event_query is not null
group by cookie_id, event_query#===============优化后
insert overwrite table tblB partition (dt = '2022-10-19')
selectsplit(tkey, '_')[1] as cookie_id,event_query,#--- 求出最终的聚合值sum(cnt)   as cnt
from (selectconcat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id) as tkey,event_query,#---将热点Key值:cookie_id 进行打散后,先局部聚合得到cntcount(*)  as cntfrom tblAwhere dt >= '20220718'and dt <= '20221019'and event_query is not null#--- 第一阶段:添加[0-99]随机整数,将热点Key值:cookie_id 进行打散( M -->R)group by concat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id),event_query) temp#--- 第二阶段:对拼接的key值进行切分,还原原本的key值split(tkey, '_')[1] =cookie_id ( R -->R)
group by split(tkey, '_')[1], event_que

 优化思路为:

  •   第一阶段:对需要聚合的Key值添加随机后缀进行打散,基于加工后的key值进行初步聚合(M-->R1)
  •   第二阶段:对加工后的key值进行切分还原,对第一阶段的聚合值进行再次聚合,求出最终结果值(R1-->R2)

2)开启Map端聚合

#--开启Map端聚合,默认为true
set hive.map.aggr = true;
#--在Map 端预先聚合操作的条数
set hive.groupby.mapaggr.checkinterval = 100000;

    该参数可以将顶层的聚合操作放在 Map 阶段执行,从而减轻shuffle清洗阶段的数据传输和 Reduce阶段的执行时间,提升总体性能。

3)数据倾斜时自动负载均衡

#---有数据倾斜的时候自动负载均衡(默认是 false)
set hive.groupby.skewindata = true;

  开启该参数后,当前程序会自动通过两个MapReduce来运行,将M->R阶段 拆解成 M->R->R阶段

  • 第一个MapReduce自动进行随机分布到Reducer中(负载均衡),每个Reducer做部分聚合操作,输出结果
  • 第二个MapReduce将上一步聚合的结果再按照业务(group by key)进行处理,保障相同的key分发到同一个reduce做最终聚合。

相关文章:

(12)Hive调优——count distinct去重优化

离线数仓开发过程中经常会对数据去重后聚合统计&#xff0c;count distinct使得map端无法预聚合&#xff0c;容易引发reduce端长尾&#xff0c;以下是count distinct去重调优的几种方式。 解决方案一&#xff1a;group by 替代 原sql 如下&#xff1a; #7日、14日的app点击的…...

记录 | 验证pytorch-cuda是否安装成功

检测程序如下&#xff1a; import torchprint(torch.__version__) print(torch.cuda.is_available()) 或者用终端 Shell&#xff0c;运行情况如下...

LeetCode 239.滑动窗口的最大值 Hot100 单调栈

给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1&#xff1a; 输入&#xff1a;nums [1,3,-1,-3,5,3,6,7], k 3 输…...

463. Island Perimeter(岛屿的周长)

问题描述 给定一个 row x col 的二维网格地图 grid &#xff0c;其中&#xff1a;grid[i][j] 1 表示陆地&#xff0c; grid[i][j] 0 表示水域。 网格中的格子 水平和垂直 方向相连&#xff08;对角线方向不相连&#xff09;。整个网格被水完全包围&#xff0c;但其中恰好有…...

如何解决缓存和数据库的数据不一致问题

数据不一致问题是操作数据库和操作缓存值的过程中&#xff0c;其中一个操作失败的情况。实际上&#xff0c;即使这两个操作第一次执行时都没有失败&#xff0c;当有大量并发请求时&#xff0c;应用还是有可能读到不一致的数据。 如何更新缓存 更新缓存的步骤就两步&#xff0…...

linux系统下vscode portable版本的python环境搭建003:venv

这里写自定义目录标题 python安装方案一. 使用源码安装&#xff08;有[构建工具](https://blog.csdn.net/ResumeProject/article/details/136095629)的情况下&#xff09;方案二.使用系统包管理器 虚拟环境安装TESTCG 本文目的&#xff1a;希望在获得一个新的系统之后&#xff…...

使用TinyXML-2解析XML文件

一、XML介绍 当我们想要在不同的程序、系统或平台之间共享信息时&#xff0c;就需要一种统一的方式来组织和表示数据。XML&#xff08;EXtensible Markup Language&#xff0c;即可扩展标记语言&#xff09;是一种用于描述数据的标记语言&#xff0c;它让数据以一种结构化的方…...

Linux:docker在线仓库(docker hub 阿里云)基础操作

把镜像放到公网仓库&#xff0c;这样可以方便大家一起使用&#xff0c;当需要时直接在网上拉取镜像&#xff0c;并且你可以随时管理自己的镜像——删除添加或者修改。 1.docker hub仓库 2.阿里云加速 3.阿里云仓库 由于docker hub是国外的网站&#xff0c;国内的对数据的把控…...

C语言程序设计(第四版)—习题7程序设计题

目录 1.选择法排序。 2.求一批整数中出现最多的数字。 3.判断上三角矩阵。 4.求矩阵各行元素之和。 5.求鞍点。 6.统计大写辅音字母。 7.字符串替换。 8.字符串转换成十进制整数。 1.选择法排序。 输入一个正整数n&#xff08;1&#xff1c;n≤10&#xff09;&#xf…...

ZCC6982-同步升压充双节锂电池充电芯片

特性 ■高达 2A 的可调充电电流&#xff08;受实际散热和输入功率限制&#xff09; ■支持 8.4V、8.6V、8.7V、8.8V 的充满电压&#xff08;限QFN&#xff09; ■高达 28V 的输入耐压保护 ■高达 28V 的电池端耐压保护 ■宽输入工作电压范围&#xff1a;3.0V~6.5V ■峰值…...

定时器(基本定时器、通用定时器、高级定时器)

目录 一、基本定时器 二、通用定时器 三、高级定时器 一、基本定时器 1、作用&#xff1a;计时和计数。 二、通用定时器 1、除了有基本定时器的计时和计数功能外&#xff0c;主要有输入捕获和输出比较的功能&#xff0c;硬件主要由六大部分组成&#xff1a; ① 时钟源 ② 控…...

009集——磁盘详解——电脑数据如何存储在磁盘

很多人也知道数据能够保存是由于设备中有一个叫做「硬盘」的组件存在&#xff0c;但也有很多人不知道硬盘是怎样储存这些数据的。这里给大家讲讲其中的原理。 首先我们要明白的是&#xff0c;计算机中只有0和1&#xff0c;那么我们存入硬盘的数据&#xff0c;实际上也就是一堆0…...

鸿蒙开发-HarmonyOS UI架构

初步布局Index 当我们新建一个工程之后&#xff0c;首先会进入Index页。我们先简单的做一个文章列表的显示 class Article {title?: stringdesc?: stringlink?: string }Entry Component struct Index {State articles: Article[] []build() {Row() {Scroll() {Column() …...

Flutter 动画(显式动画、隐式动画、Hero动画、页面转场动画、交错动画)

前言 当前案例 Flutter SDK版本&#xff1a;3.13.2 显式动画 Tween({this.begin,this.end}) 两个构造参数&#xff0c;分别是 开始值 和 结束值&#xff0c;根据这两个值&#xff0c;提供了控制动画的方法&#xff0c;以下是常用的&#xff1b; controller.forward() : 向前…...

用HTML5 Canvas创造视觉盛宴——动态彩色线条效果

目录 一、程序代码 二、代码原理 三、运行效果 一、程序代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!-- 声明文档类型为XHTML 1.0 Transitional -…...

云原生介绍与容器的基本概念

云原生介绍 1、云原生的定义 云原生为用户指定了一条低心智负担的、敏捷的、能够以可扩展、可复制的方式最大化地利用云的能力、发挥云的价值的最佳路径。 2、云原生思想两个理论 第一个理论基础是&#xff1a;不可变基础设施。 第二个理论基础是&#xff1a;云应用编排理…...

Flash存储

目录 一、MCU读写擦除Flash步骤 1、写flash步骤&#xff1a; 2、读flash步骤&#xff1a; 3、擦除flash步骤&#xff1a; 4、要注意的地方&#xff1a; 一、MCU读写擦除Flash步骤 1、写flash步骤&#xff1a; (1)解锁 2、读flash步骤&#xff1a; 3、擦除flash步骤&#x…...

Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ

完全背包 题目 文章讲解 视频讲解 完全背包和0-1背包的区别在于&#xff1a;物品是否可以重复使用 思路&#xff1a;对于完全背包问题&#xff0c;内层循环的遍历方式应该是从weight[i]开始一直遍历到V&#xff0c;而不是从V到weight[i]。这样可以确保每种物品可以被选择多次…...

使用PaddleNLP UIE模型提取上市公司PDF公告关键信息

项目地址&#xff1a;使用PaddleNLP UIE模型抽取PDF版上市公司公告 - 飞桨AI Studio星河社区 (baidu.com) 背景介绍 本项目将演示如何通过PDFPlumber库和PaddleNLP UIE模型&#xff0c;抽取公告中的相关信息。本次任务的PDF内容是破产清算的相关公告&#xff0c;目标是获取受理…...

软件工程师,OpenAI Sora驾到,快来围观

概述 近期&#xff0c;OpenAI在其官方网站上公布了Sora文生视频模型的详细信息&#xff0c;展示了其令人印象深刻的能力&#xff0c;包括根据文本输入快速生成长达一分钟的高清视频。Sora的强大之处在于其能够根据文本描述&#xff0c;生成长达60秒的视频&#xff0c;其中包含&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...