【动态规划】【C++算法】2742. 给墙壁刷油漆
作者推荐
【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字
本文涉及知识点
动态规划汇总
LeetCode2742. 给墙壁刷油漆
给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time ,分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有两名油漆匠:
一位需要 付费 的油漆匠,刷第 i 堵墙需要花费 time[i] 单位的时间,开销为 cost[i] 单位的钱。
一位 免费 的油漆匠,刷 任意 一堵墙的时间为 1 单位,开销为 0 。但是必须在付费油漆匠 工作 时,免费油漆匠才会工作。
请你返回刷完 n 堵墙最少开销为多少。
示例 1:
输入:cost = [1,2,3,2], time = [1,2,3,2]
输出:3
解释:下标为 0 和 1 的墙由付费油漆匠来刷,需要 3 单位时间。同时,免费油漆匠刷下标为 2 和 3 的墙,需要 2 单位时间,开销为 0 。总开销为 1 + 2 = 3 。
示例 2:
输入:cost = [2,3,4,2], time = [1,1,1,1]
输出:4
解释:下标为 0 和 3 的墙由付费油漆匠来刷,需要 2 单位时间。同时,免费油漆匠刷下标为 1 和 2 的墙,需要 2 单位时间,开销为 0 。总开销为 2 + 2 = 4 。
提示:
1 <= cost.length <= 500
cost.length == time.length
1 <= cost[i] <= 106
1 <= time[i] <= 500
动态规划
动态规划的状态表示
合法状态:付费工人用时大于等于免费工人用时。
注意:第i项工作,付费工人需要time[i]时间,免费工人需要1。所以前i项工作,付费工人用时和免费工人用时之和不固定。
免费工人用时 ∈ \in ∈[0,500],付费工人用时大于等于500,必定可行,所以付费用时用时也 ∈ \in ∈[0,500]。
如果直接暴力处理,空间复杂度:O(n2),处理每份工作时间复杂度O(n),总时间复杂度O(n3)超时。
状态优化
付费工人用时>=免费工人用时 ⟺ \iff ⟺ 付费工人用时 - 免费工人用时 >=0
付费工人用时 - 免费工人用时 ∈ \in ∈[-500,500] 为了方便可以加上500,变成 ∈ \in ∈[0,100don0]
空间复杂度变成:O(n) 总时间复杂度:O(nn)。
动态规划的转移方程
{ d p [ m i n ( 1000 , j + c o s t [ i ] ) ] = m i n ( , p r e [ j ] + c o s t [ i ] ) 使用付费工人 d p [ j − 1 ] = m i n ( , p r e [ j ] ) \begin{cases} dp[min(1000,j+cost[i])] = min(,pre[j]+cost[i]) & 使用付费工人 \\ dp[j-1] = min(,pre[j]) & \\ \end{cases} {dp[min(1000,j+cost[i])]=min(,pre[j]+cost[i])dp[j−1]=min(,pre[j])使用付费工人
动态规划的初始值
dp[500]= 0
动态规划的填表顺序
依次处理各任务。
动态规划返回值
dp[500,1000]的最大值。
代码
核心代码
template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{*seft = min(*seft,(ELE) other);
}template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{*seft = max(*seft, other);
}class Solution {
public:int paintWalls(vector<int>& cost, vector<int>& time) {int n = cost.size();vector<int> pre(n * 2 + 1, m_iNotMay);pre[n] = 0;for (int i = 0; i < cost.size(); i++){vector<int> dp(n * 2 + 1, m_iNotMay);for (int j = 0; j <= n * 2; j++){if (pre[j] >= m_iNotMay){continue;}MinSelf(&dp[min(2 * n, j + time[i])], pre[j] + cost[i]);MinSelf(&dp[j - 1], pre[j]);}pre.swap(dp);}return *std::min_element(pre.begin() + n, pre.end());}const int m_iNotMay = 1e9;
};
测试用例
template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{ int n;vector<int> cost, time;{Solution sln;cost = { 1, 2, 3, 2 }, time = { 1, 2, 3, 2 };auto res = sln.paintWalls(cost, time);Assert(res,3);}{Solution sln;cost = { 2, 3, 4, 2 }, time = { 1, 1, 1, 1 };auto res = sln.paintWalls(cost, time);Assert(res, 4);}}
2023年6月
class Solution {
public:
int paintWalls(vector& cost, vector& time) {
m_c = cost.size();
vector< int> preTimeAddNumToMinCost(m_c+1,INT_MAX);
preTimeAddNumToMinCost[0] = 0;
for (int ii = 0; ii < m_c; ii++)
{
vector< int> dp = preTimeAddNumToMinCost;
for (int j = 0; j < m_c; j++ )
{
if (INT_MAX == preTimeAddNumToMinCost[j])
{
continue;
}
int iTimeAndNum = j + time[ii] + 1 ;
const int iCurCost = preTimeAddNumToMinCost[j] + cost[ii];
iTimeAndNum = min(iTimeAndNum, m_c);
dp[iTimeAndNum] = min(dp[iTimeAndNum], iCurCost);
}
dp.swap(preTimeAddNumToMinCost);
}
return preTimeAddNumToMinCost[m_c];
}
int m_c;
};

扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
| 我想对大家说的话 |
|---|
| 闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
| 如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:
【动态规划】【C++算法】2742. 给墙壁刷油漆
作者推荐 【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字 本文涉及知识点 动态规划汇总 LeetCode2742. 给墙壁刷油漆 给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time ,分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有…...
【后端高频面试题--设计模式上篇】
🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 往期精彩内容 【后端高频面试题–设计模式上篇】 【后端高频面试题–设计模式下篇】 【后端高频…...
P3141 [USACO16FEB] Fenced In P题解
题目 如果此题数据要小一点,那么我们可以用克鲁斯卡尔算法通过,但是这个数据太大了,空间会爆炸,时间也会爆炸。 我们发现,如果用 MST 做,那么很多边的边权都一样,我们可以整行整列地删除。 我…...
Android Compose 一个音视频APP——Magic Music Player
Magic Music APP Magic Music APP Magic Music APP概述效果预览-视频资源功能预览Library歌曲播放效果预览歌曲播放依赖注入设置播放源播放进度上一首&下一首UI响应 歌词歌词解析解析成行逐行解析 视频播放AndroidView引入Exoplayer自定义Exoplayer样式横竖屏切换 歌曲多任…...
Nginx实战:安装搭建
目录 前言 一、yum安装 二、编译安装 1.下载安装包 2.解压 3.生成makefile文件 4.编译 5.安装执行 6.执行命令软连接 7.Nginx命令 前言 nginx的安装有两种方式: 1、yum安装:安装快速,但是无法在安装的时候带上想要的第三方包 2、…...
Qt之条件变量QWaitCondition详解(从使用到原理分析全)
QWaitCondition内部实现结构图: 相关系列文章 C之Pimpl惯用法 目录 1.简介 2.示例 2.1.全局配置 2.2.生产者Producer 2.3.消费者Consumer 2.4.测试例子 3.原理分析 3.1.源码介绍 3.2.辅助函数CreateEvent 3.3.辅助函数WaitForSingleObject 3.4.QWaitCo…...
OpenSource - 一站式自动化运维及自动化部署平台
文章目录 orion-ops 是什么重构特性快速开始技术栈功能预览添砖加瓦License orion-ops 是什么 orion-ops 一站式自动化运维及自动化部署平台, 使用多环境的概念, 提供了机器管理、机器监控报警、Web终端、WebSftp、机器批量执行、机器批量上传、在线查看日志、定时调度任务、应…...
【后端高频面试题--设计模式下篇】
🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 后端高频面试题--设计模式下篇 往期精彩内容设计模式总览模板方法模式怎么理解模板方法模式模板方…...
这才是大学生该做的副业,别再痴迷于游戏了!
感谢大家一直以来的支持和关注,尤其是在我的上一个公众号被关闭后,仍然选择跟随我的老粉丝们,你们的支持是我继续前行的动力。为了回馈大家长期以来的陪伴,我决定分享一些实用的干货,这些都是我亲身实践并且取得成功的…...
Ubuntu20.04 安装jekyll
首先使根据官方文档安装:Jekyll on Ubuntu | Jekyll • Simple, blog-aware, static sites 如果没有报错,就不用再继续看下去了。 我这边在执行gem install jekyll bundler时报错,所以安装了rvm,安装rvm可以参考这篇文章Ubuntu …...
AWK语言
一. awk awk:报告生成器,格式化输出。 在 Linux/UNIX 系统中,awk 是一个功能强大的编辑工具,逐行读取输入文本,默认以空格或tab键作为分隔符作为分隔,并按模式或者条件执行编辑命令。而awk比较倾向于将一行…...
精通Nmap:网络扫描与安全的终极武器
一、引言 Nmap,即NetworkMapper,是一款开源的网络探测和安全审计工具。它能帮助您发现网络中的设备,并识别潜在的安全风险。在这个教程中,我们将一步步引导您如何有效地使用Nmap,让您的网络更加安全。 因为Nmap还有图…...
Java 学习和实践笔记(11)
三大神器: 官方网址: http://www.jetbrains.com/idea/ 官方网址: https://code.visualstudio.com/ 官方网址: http://www.eclipse.org 装好了idea社区版,并试运行以下代码,OK! //TIP To <b>Run</b> code, press &l…...
开发实体类
开发实体类之间先在pom文件中加入该依赖 <!-- 开发实体类--><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><scope>provided</scope></dependency>我们在实体类中声明各个属…...
人工智能学习与实训笔记(十五):Scikit-learn库的基础与使用
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 本篇目录 一、介绍 1. 1 Scikit-learn的发展历程及定义 1.2 理解算法包、算法库及算法框架之间的区别和联系 二、Scikit-learn官网结构 三、安装与设置 3.1 Python环境的安装与配置 3.2 Scikit-lea…...
插值与拟合算法介绍
在数据处理和科学计算领域,插值与拟合是两种极为重要的数据分析方法。它们被广泛应用于信号处理、图像处理、机器学习、金融分析等多个领域,对于理解和预测数据趋势具有至关重要的作用。本文将深入浅出地介绍这两种算法的基本原理,并结合C语言编程环境探讨如何在CSDN开发者社…...
下一代Windows系统曝光:基于GPT-4V,Agent跨应用调度,代号UFO
下一代Windows操作系统提前曝光了?? 微软首个为Windows而设的智能体(Agent) 亮相: 基于GPT-4V,一句话就可以在多个应用中无缝切换,完成复杂任务。整个过程无需人为干预,其执行成功…...
二.自定义头文件
一.Worker.h 1.1概述 - 类名:Worker - 继承关系:所有其他类(Employee、Manager、Boss)都继承自该抽象类 - 头文件保护:使用 pragma once 防止头文件重复包含 - 引入标准库:包含 <iostream> 和 <st…...
【AIGC】Stable Diffusion之模型微调工具
推荐一款好用的模型微调工具,cybertron furnace 是一个lora训练整合包,提供训练 lora 模型的工具集或环境。集成环境包括必要的依赖项和配置文件、预训练脚本,支持人物、二次元、画风、自定义lora的训练,以简化用户训练 lora 模型…...
探索未来科技前沿:深度学习的进展与应用
深度学习的进展 摘要:深度学习作为人工智能领域的重要分支,近年来取得了巨大的进展,并在各个领域展现出惊人的应用潜力。本文将介绍深度学习的发展历程、技术原理以及在图像识别、自然语言处理等领域的应用,展望深度学习在未来的…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
