当前位置: 首页 > news >正文

【YOLO系列算法人员摔倒检测】

YOLO系列算法人员摔倒检测

      • 模型和数据集下载
      • YOLO系列算法的人员摔倒检测
      • 数据集可视化
      • 数据集图像示例:

模型和数据集下载

yolo行人跌倒检测一:
1、训练好的行人跌倒检测权重以及PR曲线,loss曲线等等,map达90%多,在行人跌倒数据集中训练得到的权重,目标类别为fall共1个类别,并附1000多张行人摔倒数据集,标签格式为txt和xml两种,分别保存在两个文件夹中
2、采用pytrch框架,python代码,可以和YOLOv5共用一个环境,配置好环境就可以加载已经训练好的模型直接进行测试,得出结果

跌倒检测数据集一下载:
https://download.csdn.net/download/zhiqingAI/84587834
跌倒检测数据集二下载:
https://download.csdn.net/download/zhiqingAI/85052438
YOLOv3跌到检测数据集:
https://download.csdn.net/download/zhiqingAI/85474854
YOLOv5跌到检测数据集:
https://download.csdn.net/download/zhiqingAI/85490729
YOLOv5跌到检测数据集+pyqt界面:
https://download.csdn.net/download/zhiqingAI/85490824
YOLOv7行人跌倒检测+训练好的模型+1000多数据集
yolo格式标签行人跌倒数据集+ 8000张

YOLO系列算法的人员摔倒检测

YOLO系列算法从v1发展到v9,每个版本都有其独特的改进和创新。
以下是对YOLO系列部分版本的简要概述:

YOLOv1:作为YOLO系列的首个版本,它的核心思想是使用单个神经网络同时预测物体的类别和位置。这种方法在当时是一个重大突破,因为它将目标检测任务的速度大幅提升,但牺牲了一定的精度。
YOLOv2:在YOLOv1的基础上进行了改进,提出了YOLOv2(也称为YOLO9000)。这个版本通过引入批归一化、更高分辨率的输入图像、细粒度特征等方法,显著提高了召回率和定位精度。
YOLOv3:继续在速度和精度上进行优化,引入了多尺度预测、更复杂的网络结构等。
YOLOv4:进一步提升了性能,特别是在小物体检测上,通过引入马赛克数据增强、Mish激活函数等技术。
YOLOv5:在YOLOv4的基础上,更加注重模型的实用性和灵活性,采用了新的训练策略和网络设计,使其在保持高性能的同时,更加适合在资源受限的环境中部署。
YOLOv6 和 YOLOv7:分别在其前身的基础上进行了进一步的改进,提高了检测速度和精度,同时也更加注重模型的通用性和适应性。
YOLOv8:是YOLO系列中的新成员,它继续沿用和发展了YOLO系列的核心理念,通过不断的技术创新来提高模型的性能和应用范围。
yolov9: 最新出来的yolov9,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。研究者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。

总的来说,YOLO系列的发展体现了深度学习在目标检测领域的快速进步,每个版本都在尝试解决前一个版本的不足,并在速度和精度上寻求更好的平衡。随着技术的不断进步,YOLO系列将继续演化,为用户提供更加强大和便捷的目标检测工具

基于YOLO系列算法的人员摔倒检测系统通常涉及以下几个关键步骤

  1. 数据集准备:需要收集和标注用于训练的数据集。这些数据集应包含各种情况下的人体站立、弯腰蹲下和躺下摔倒的图片或视频。数据集的质量直接影响到模型的训练效果。
  2. 模型选择与训练:选择合适的YOLO模型版本,如YOLOv5、YOLOv7或YOLOv8,并根据具体的应用场景对模型进行训练。训练过程中,模型会学习识别人体的不同状态;
  3. 算法优化:为了提高检测的准确性,可能需要对算法进行优化,比如调整检测置信分和后处理IOU阈值。此外,还可以结合其他技术,如OpenPose,来进一步提高摔倒检测的准确率。
  4. 系统部署与测试:将训练好的模型部署到实际的应用场景中,如监控摄像头系统。系统应能够实时处理图像或视频流,并准确检测出摔倒事件。同时,系统还需要具备结果可视化和检测结果导出的功能。
  5. 界面设计:为了方便用户使用,可以设计一个友好的用户界面(UI),使用户能够轻松地上传图片或视频,触发检测,并查看检测结果。
  6. 性能评估:在实际应用中,需要对系统的性能进行评估,包括检测速度和精度。

总的来说,通过以上步骤,可以构建出一个能够有效检测人员摔倒事件的系统。这种系统在公共安全、老年人监护、体育赛事等领域具有广泛的应用前景,能够及时发出警报,减少事故发生的风险。

数据集可视化

在这里插入图片描述在这里插入图片描述在这里插入图片描述

数据集图像示例:

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

相关文章:

【YOLO系列算法人员摔倒检测】

YOLO系列算法人员摔倒检测 模型和数据集下载YOLO系列算法的人员摔倒检测数据集可视化数据集图像示例: 模型和数据集下载 yolo行人跌倒检测一: 1、训练好的行人跌倒检测权重以及PR曲线,loss曲线等等,map达90%多,在行人跌…...

获取淘宝商品详情API、商品主图、图片搜索api

获取淘宝详情API的方式有以下几种: 使用淘宝开放平台提供的接口:淘宝开放平台提供了多个API接口,让开发者可以通过接口获取商品详情信息。你可以到淘宝开放平台官网申请开发者账号,并查看相关接口文档,了解如何使用接…...

HarmonyOS创建一个ArkTS卡片

创建一个ArkTS卡片 在已有的应用工程中,创建ArkTS卡片,具体操作方式如下。 创建卡片。 根据实际业务场景,选择一个卡片模板。 在选择卡片的开发语言类型(Language)时,选择ArkTS选项,然后单…...

ChatGPT Plus遇到订阅被拒原因与解决方案

ChatGPT Plus被广泛认为相比普通版本更快、更强,并且能最先体验新功能。 很多小伙伴再订阅时遇到图片中的问题 错误提示包括这些: Your credit card was declined.Try paying with a debit card instead.您的信用卡被拒绝了。请尝试用借记卡支付。你的…...

UE蓝图 函数调用(CallFunction)节点和源码

系列文章目录 UE蓝图 Get节点和源码 UE蓝图 Set节点和源码 UE蓝图 Cast节点和源码 UE蓝图 分支(Branch)节点和源码 UE蓝图 入口(FunctionEntry)节点和源码 UE蓝图 返回结果(FunctionResult)节点和源码 UE蓝图 函数调用(CallFunction)节点和源码 文章目录 系列文章目录一、Call…...

Vue单文件学习项目综合案例Demo,黑马vue教程

文章目录 前言一、小黑记事本二、购物车三、小黑记账清单 前言 bilibili视频地址 一、小黑记事本 效果图 主代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"/><meta http-equiv"X-UA-Compatible&…...

机器视觉【3】非线性求解相机几何参数

线性求解相机几何参数的缺点 上一章节介绍学习了&#xff08;DLT&#xff09;线性求解相机几何参数&#xff0c;了解到线性求解法当中比较明显的缺点&#xff1a; 没有考虑到镜头畸变的影响不能引入更多的约束条件融入到DLT算法当中优化最关键的是&#xff0c;代数距离并不是…...

Qt编译报错:The slot requires more arguments than the signal provides.

编译时代码没有提示错误的地方&#xff0c;报错的地方在qt的文件&#xff0c;还以为什么莫名其妙的错误呢&#xff0c;原来就是连接的信号和槽函数参数不匹配&#xff0c;有个信号是没有参数的&#xff0c;但我的槽函数有个参数&#xff0c;然后就报错了。 改下槽函数的参数就…...

【Unity】提示No valid Unity Editor liscense found.Please active your liscense.

有两个软件&#xff0c;如果只有一个&#xff0c;点黑的不会有效果、、、、&#xff08;楼主是这个原因&#xff0c;可以对号入座一下&#xff09; 简而言之&#xff0c;就是去下载Unity Hub&#xff0c;再里面激活管理通行证 问题情境&#xff1a; 点击unity出现以下弹窗&a…...

如何在 Tomcat 中为 Web 应用程序启用和配置缓存?

在Tomcat中为Web应用程序启用和配置缓存通常涉及到对Tomcat的连接器&#xff08;Connector&#xff09;进行配置&#xff0c;以及可能的话&#xff0c;配置Web应用程序本身以支持缓存。 1. 配置Tomcat连接器以启用缓存 Tomcat的连接器可以通过其配置来启用各种…...

QEMU开发入门

1. 简介 QEMU&#xff08;Quick EMUlator&#xff09;是一个开源的虚拟化软件&#xff0c;它能够模拟多种硬件平台&#xff0c;并在这些平台上运行各种操作系统。QEMU可以在不同的主机架构之间进行虚拟化&#xff0c;例如x86、ARM、PowerPC、Risc-V等。QEMU是一个功能强大且灵…...

10-pytorch-完整模型训练

b站小土堆pytorch教程学习笔记 一、从零开始构建自己的神经网络 1.模型构建 #准备数据集 import torch import torchvision from torch.utils.tensorboard import SummaryWriterfrom model import * from torch.utils.data import DataLoadertrain_datatorchvision.datasets.…...

高级RAG:重新排名,从原理到实现的两种主流方法

原文地址&#xff1a;https://pub.towardsai.net/advanced-rag-04-re-ranking-85f6ae8170b1 2024 年 2 月 14 日 重新排序在检索增强生成&#xff08;RAG&#xff09;过程中起着至关重要的作用。在简单的 RAG 方法中&#xff0c;可以检索大量上下文&#xff0c;但并非所有上下…...

使用logicflow流程图实例

一.背景 需要使用流程引擎开发项目&#xff0c;没有使用flowable、activiti这类的国外流程引擎&#xff0c;想使用国内的引擎二次开发&#xff0c;缺少单例模式的流程画图程序&#xff0c;都是vue、react、angluer的不适合&#xff0c;从网上找了antx6、logicflow、bpmn.js。感…...

Stable Diffusion 绘画入门教程(webui)-ControlNet(IP2P)

上篇文章介绍了深度Depth&#xff0c;这篇文章介绍下IP2P&#xff08;InstructP2P&#xff09;, 通俗理解就是图生图&#xff0c;给原有图加一些效果,比如下图&#xff0c;左边为原图&#xff0c;右边为增加了效果的图&#xff1a; 文章目录 一、选大模型二、写提示词三、基础参…...

五力分析(Porter‘s Five Forces)

五力分析是一种用于评估竞争力的框架&#xff0c;由哈佛商学院教授迈克尔波特&#xff08;Michael Porter&#xff09;提出。它通过分析一个行业的五个关键力量&#xff08;竞争对手、供应商、顾客、替代品和新进入者&#xff09;来评估一个企业或行业的竞争环境。这个框架可以…...

十一、Qt数据库操作

一、Sql介绍 Qt Sql模块包含多个类&#xff0c;实现数据库的连接&#xff0c;Sql语句的执行&#xff0c;数据获取与界面显示&#xff0c;数据与界面直接使用Model/View结构。1、使用Sql模块 &#xff08;1&#xff09;工程加入 QT sql&#xff08;2&#xff09;添加头文件 …...

【Spring】IoC容器 控制反转 与 DI依赖注入 XML实现版本 第二期

文章目录 基于 XML 配置方式组件管理前置 准备项目一、 组件&#xff08;Bean&#xff09;信息声明配置&#xff08;IoC&#xff09;&#xff1a;1.1 基于无参构造1.2 基于静态 工厂方法实例化1.3 基于非静态 工厂方法实例化 二、 组件&#xff08;Bean&#xff09;依赖注入配置…...

神经网络系列---感知机(Neuron)

文章目录 感知机(Neuron)感知机(Neuron)的决策函数可以表示为&#xff1a;感知机(Neuron)的学习算法主要包括以下步骤&#xff1a;感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。 感知机(Neuron) 感知机(Neuron)是一种简单而有效的二分类算法&#xff0c;用于将输入…...

k8s(2)

目录 一.二进制部署k8s 常见的K8S安装部署方式&#xff1a; k8s部署 二进制与高可用的区别 二.部署k8s 初始化操作&#xff1a; 每台node安装docker&#xff1a; 在 master01 节点上操作; 准备cfssl证书生成工具:&#xff1a; 执行脚本文件&#xff1a; 拉入etcd压缩包…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...