当前位置: 首页 > news >正文

LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序

【LetMeFly】2583.二叉树中的第 K 大层和:层序遍历 + 排序

力扣题目链接:https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/

给你一棵二叉树的根节点 root 和一个正整数 k

树中的 层和 是指 同一层 上节点值的总和。

返回树中第 k 大的层和(不一定不同)。如果树少于 k 层,则返回 -1

注意,如果两个节点与根节点的距离相同,则认为它们在同一层。

 

示例 1:

输入:root = [5,8,9,2,1,3,7,4,6], k = 2
输出:13
解释:树中每一层的层和分别是:
- Level 1: 5
- Level 2: 8 + 9 = 17
- Level 3: 2 + 1 + 3 + 7 = 13
- Level 4: 4 + 6 = 10
第 2 大的层和等于 13 。

示例 2:

输入:root = [1,2,null,3], k = 1
输出:3
解释:最大的层和是 3 。

 

提示:

  • 树中的节点数为 n
  • 2 <= n <= 105
  • 1 <= Node.val <= 106
  • 1 <= k <= n

方法一:层序遍历 + 排序

如果已经掌握了二叉树的层序遍历,那么这道题将会如鱼得水。

我们依然进行层序遍历,在层序遍历的过程中,计算每一层的节点值之和,并加入到一个数组中。

遍历结束后,对数组进行排序,返回第k大值或-1即可。

  • 时间复杂度 O ( N 1 + N 2 log ⁡ N 2 ) O(N1 + N2\log N2) O(N1+N2logN2),其中 N 1 N1 N1是二叉树节点个数, N 2 N2 N2是二叉树深度
  • 空间复杂度 O ( N 3 + N 2 ) O(N3 + N2) O(N3+N2),其中 N 3 N3 N3是最多一层的节点个数

时空复杂度也可以将全部的 N N N都视为二叉树节点个数。

AC代码

C++
typedef long long ll;
class Solution {
public:ll kthLargestLevelSum(TreeNode* root, int k) {vector<ll> values;queue<TreeNode*> q;q.push(root);while (q.size()) {ll cnt = 0;for (int _ = q.size(); _ > 0; _--) {TreeNode* thisNode = q.front();q.pop();cnt += thisNode->val;if (thisNode->left) {q.push(thisNode->left);}if (thisNode->right) {q.push(thisNode->right);}}values.push_back(cnt);}sort(values.begin(), values.end());return k > values.size() ? -1 : values[values.size() - k];}
};
Python

注意本题数据级别是 1 0 5 10^5 105,不能使用数组切片模拟队列的方式。

# # Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = rightclass Solution:def kthLargestLevelSum(self, root: TreeNode, k: int) -> int:values = []q = [root]while q:cnt = 0thisLayer = qq = []for thisNode in thisLayer:cnt += thisNode.valif thisNode.left:q.append(thisNode.left)if thisNode.right:q.append(thisNode.right)values.append(cnt)values.sort()return values[len(values) - k] if len(values) >= k else -1

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/136252010

相关文章:

LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序

【LetMeFly】2583.二叉树中的第 K 大层和&#xff1a;层序遍历 排序 力扣题目链接&#xff1a;https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/ 给你一棵二叉树的根节点 root 和一个正整数 k 。 树中的 层和 是指 同一层 上节点值的总和。 返回树中第 k …...

element ui 安装 简易过程 已解决

我之所以将Element归类为Vue.js&#xff0c;其主要原因是Element是&#xff08;饿了么团队&#xff09;基于MVVM框架Vue开源出来的一套前端ui组件。我最爱的就是它的布局容器&#xff01;&#xff01;&#xff01; 下面进入正题&#xff1a; 1、Element的安装 首先你需要创建…...

websoket

WebSockets 是一种先进的技术。它可以在用户的浏览器和服务器之间打开交互式通信会话。你可以向服务器发送消息并接收事件驱动的响应&#xff0c;而无需通过轮询服务器的方式以获得响应&#xff0c;比较典型的应用场景就是即时通讯&#xff08;聊天&#xff09;系统。 <!DOC…...

案例:微服务从Java/SpringBoot迁移到Golan

基于 Java 的微服务&#xff0c;特别是那些使用 Spring Boot 的微服务&#xff0c;长期以来因其强大的功能和广泛的社区支持而闻名。Spring Boot 的约定优于配置方法简化了微服务的部署和开发&#xff0c;提供了大量开箱即用的功能&#xff0c;例如自动配置、独立功能和简单的依…...

小波变换模拟

小波变换是一种信号处理技术&#xff0c;通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用&#xff0c;可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。 MATLAB中提供了用于二维离散小波变换的…...

cv::Mat图像操作

图像读写 //include header #include <opencv2/imgcodecs.hpp>/** Currently, the following file formats are supported: Windows bitmaps - *.bmp, *.dib (always supported) JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section) JPEG 2000 files - *.jp2 (s…...

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…...

2024年软件测试岗位-面试

第一部分&#xff1a; 1、自我介绍&#xff1a;简历写到的快速描述&#xff0c;学校、学历、工作经验等&#xff08;注意&#xff1a;不要过度优化简历&#xff0c;你不写别人可能会问&#xff0c;但你写了别人一定会问&#xff01;&#xff09; 第二部分&#xff1a; 1、功能测…...

【坑】Spring Boot整合MyBatis,一级缓存失效

一、Spring Boot整合MyBatis&#xff0c;一级缓存失效 1.1、概述 MyBatis一级缓存的作用域是同一个SqlSession&#xff0c;在同一个SqlSession中执行两次相同的查询&#xff0c;第一次执行完毕后&#xff0c;Mybatis会将查询到的数据缓存起来&#xff08;缓存到内存中&#xf…...

J7 - 对于ResNeXt-50算法的思考

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 J6周有一段代码如下 思考过程 首先看到这个问题的描述&#xff0c;想到的是可能使用了向量操作的广播机制然后就想想办法验证一下&…...

R3F(React Three Fiber)基础篇

之前一直在做ThreeJS方向&#xff0c;整理了两篇R3F&#xff08;React Three Fiber&#xff09;的文档&#xff0c;这是基础篇&#xff0c;如果您的业务场景需要使用R3F&#xff0c;您又对R3F不太了解&#xff0c;或者不想使用R3F全英文文档&#xff0c;您可以参考一下这篇&…...

torch\tensorflow在大语言模型LLM中的作用

文章目录 torch\tensorflow在大语言模型LLM中的作用 torch\tensorflow在大语言模型LLM中的作用 在大型语言模型&#xff08;LLM&#xff09;中&#xff0c;PyTorch和TensorFlow这两个深度学习框架起着至关重要的作用。它们为构建、训练和部署LLM提供了必要的工具和基础设施。 …...

设计模式-创建型模式-单例模式

0 引言 创建型模式&#xff08;Creational Pattern&#xff09;关注对象的创建过程&#xff0c;是一类最常用的设计模式&#xff0c;每个创建型模式都通过采用不同的解决方案来回答3个问题&#xff1a;创建什么&#xff08;What&#xff09;&#xff0c;由谁创建&#xff08;W…...

备战蓝桥杯—— 双指针技巧巧答链表1

对于单链表相关的问题&#xff0c;双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决&#xff1a; 合并两个有序链表&#xff1a; 使用两个指针分别指向两个链表的头部&#xff0c;逐一比较节点的值&#xff0c;将较小的节点链接到结果链表…...

微信小程序返回上一级页面并自动刷新数据

文章目录 前言一、获取小程序栈二、生命周期触发总结 前言 界面由A到B&#xff0c;在由B返回A&#xff0c;触发刷新动作 一、获取小程序栈 界面A代码 shuaxin(){//此处可进行接口请求从而实现更新数据的效果console.log("刷新本页面数据啦")},界面B代码 // 返回触…...

Spring⼯⼚创建复杂对象

文章目录 5. Spring⼯⼚创建复杂对象5.1 什么是复杂对象5.2 Spring⼯⼚创建复杂对象的3种⽅式5.2.1 FactoryBean 接口5.2.2 实例⼯⼚5.2.3 静态工厂 5.3 Spring 工厂的总结 6. 控制Spring⼯⼚创建对象的次数6.1 如何控制简单对象的创建次数6.2 如何控制复杂对象的创建次数6.3 为…...

Top-N 泛型工具类

一、代码实现 通过封装 PriorityQueue 实现&#xff0c;PriorityQueue 本质上是完全二叉树实现的小根堆&#xff08;相对来说&#xff0c;如果比较器反向比较则是大根堆&#xff09;。 public class TopNUtil<E extends Comparable<E>> {private final PriorityQ…...

Java 后端面试指南

面试指南 TMD&#xff0c;一个后端为什么要了解那么多的知识&#xff0c;真是服了。啥啥都得了解 MySQL MySQL索引可能在以下几种情况下失效&#xff1a; 不遵循最左匹配原则&#xff1a;在联合索引中&#xff0c;如果没有使用索引的最左前缀&#xff0c;即查询条件中没有包含…...

142.环形链表 ||

给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整…...

Nacos、Eureka、Zookeeper注册中心的区别

Nacos、Eureka和Zookeeper都是常用的注册中心&#xff0c;它们在功能和实现方式上存在一些不同。 Nacos除了作为注册中心外&#xff0c;还提供了配置管理、服务发现和事件通知等功能。Nacos默认情况下采用AP架构保证服务可用性&#xff0c;CP架构底层采用Raft协议保证数据的一…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...